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Abstract—Tensor analysis (through tensor decompositions) is
increasingly becoming popular as a powerful technique for
enabling comprehensive and complete analysis of real-world data.
In many critical modern applications, large-scale tensor data
arrives continuously (in streams) or changes dynamically over
time. Tensor decompositions over static snapshots of tensor data
become prohibitively expensive due to space and computational
bottlenecks, and severely limit the use of tensor analysis in
applications that require quick response. Effective and rapid
streaming (or non-stationary) tensor decompositions are critical
for enabling large-scale real-time analysis.

We present new algorithms for streaming tensor decomposi-
tions that effectively use the low-rank structure of data updates
to dynamically and rapidly perform tensor decompositions of
continuously evolving data. Our contributions presented here
are integral for enabling tensor decompositions to become a
viable analysis tool for large-scale time-critical applications.
Further, we present our newly-implemented parallelized versions
of these algorithms, which will enable more effective deployment
of these algorithms in real-world applications. We present the
effectiveness of our approach in terms of faster execution of
streaming tensor decompositions that directly translate to short
response time during analysis.

I. INTRODUCTION

Tensors or multi-dimensional arrays are a natural fit for rep-
resenting data that is often associated with multiple attributes
or data that represents relationships between multiple entities
at once. Tensor analysis (through tensor decompositions) is
increasingly becoming established as a powerful technique for
enabling comprehensive and complete analysis of multi-aspect
real-world data. Tensor analysis has been applied in a broad
range of areas, ranging from signal processing, data mining,
computer vision, graph analysis to neuroscience [1]. Tensor
decompositions are popular in scientific domains and also in
modern applications such as social network analysis, cyber
security analysis and web search mining.

In many critical modern applications, large-scale tensor
data arrives continuously (in streams) or changes dynami-
cally over time. Examples of such data are social network
data, spatio-temporal climate observations in climate data,
and network traffic data streams. Tensor decompositions of
static snapshots of such tensor data become very expensive
due to space and computational bottlenecks, and severely
limit the use of tensor analysis in time-sensitive applications
that require quick response time. Therefore, effective and
fast streaming (or non-stationary) tensor decompositions are
critical for enabling large-scale real-time analysis. Streaming

tensor decompositions need to take advantage of the low-rank
structure of data updates to dynamically and quickly perform
tensor decompositions.

In this paper, we make the following contributions:

• Algorithms for dynamic low-rank updates to tensor de-
compositions;

• Implementation of parallel versions of low-rank update
algorithms

We integrate the sequential and parallel versions of the
dynamic low-rank update algorithms into the ENSIGN Tensor
Toolbox (ETTB) [2]. ETTB is a high-performance C/C++
tensor toolbox that supports novel optimized sparse tensor
data structures proposed by Baskaran et al. [3] and provides
optimized parallel implementations of multiple tensor decom-
position methods [3], [4], [5].

We present background information on tensor mathematics,
including tensor decompositions in Section II. We detail our
algorithms for dynamic (streaming) low-rank updates to tensor
decompositions in Section III. More information on streaming
tensor decompositions, low-rank tensor updates, and relevant
related work on this topic are discussed in Section IV. The
effectiveness of our approach in terms of rapid execution of
streaming tensor decompositions (using sequential and paral-
lelized versions of our algorithms) is presented in Section V,
and we conclude with a summary in Section VI.

II. BACKGROUND

In this Section, we review some of the basic definitions and
concepts of tensor operations and tensor decompositions.

A tensor is a multi-dimensional array, and the order of
a tensor is the number of dimensions (also referred to as
modes) of the tensor. Two popular and prominent tensor
decompositions are CANDECOMP/PARAFAC (CP) [6], [7]
and Tucker decompositions [8].

The two tensor decomposition methods are defined as
follows:

a) CP Decomposition: The CP tensor decomposition
decomposes a tensor into a sum of component rank-one tensors
(An N -way tensor is called a rank-one tensor if it can be
expressed as an outer product of N vectors). The CP decom-
position that factorizes an input tensor X of size I1×· · ·× IN
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into R components (with factor matrices A(1) . . .A(N) and
weight vector λ) is of the form:

X =
R∑

r=1

λra(1)
r ◦ · · · ◦ a(N)

r ,

where a(n)r represents the rth column of the factor matrix A(n)

of size In ×R.
b) Tucker Decomposition: The Tucker decomposition

decomposes a tensor into a core tensor multiplied by a matrix
along each mode. The Tucker decomposition that factorizes
an input tensor X of size I1 × · · · × IN into a core tensor
G of size R1 × · · · × RN and factor matrices A(1) . . .A(N)

(where each factor matrix A(n) is of size In×Rn and usually
column-wise orthogonal) is of the form:

X = G×1 A(1) ×2 · · · ×N A(N).

No trivial algorithm exists to determine the rank of a
tensor, and the problem of finding tensor rank is NP-hard [9].
Hence, usually a best “rank R” approximation is used for CP
decomposition and a best “rank (R1, . . . , RN )” approximation
is used for Tucker decomposition such that the decomposition
better approximates the input tensor.

We restrict our discussion in the rest of this paper to
the Tucker decomposition and low-rank updates to Tucker
decompositions. The widely used algorithm for computing a
Tucker decomposition is the higher-order orthogonal iteration
(HOOI) method [10]. The HOOI method for the Tucker
decomposition of a tensor, finding optimal low-rank tensor
factorization, is computed using an iterative alternating least-
squares (ALS) technique in which factor matrices are deter-
mined by iteratively computing the dominant singular vectors
of X(n) (where X(n) represents the mode-n matricization of
the tensor X) using Singular Value Decomposition (SVD). The
objective of the optimization problem that the HOOI method
solves in each iteration is to minimize the “error” in low-rank
approximation resulting from the decomposition:

min
X̂

∥∥∥X− X̂
∥∥∥ ,

where X̂ = G×1A(1)×2 · · ·×N A(N) and A(n) is column-wise
orthogonal for n = 1 . . . N .

A metric that is used to measure how close the low-rank
approximation resulting from the decomposition is to the
original tensor is the “fit,” defined as:

fit = 1−

∥∥∥X− X̂
∥∥∥

‖X‖

The HOOI method involves computationally “expensive”
algorithmic kernels such as the SVD and n-Mode matrix
product. The n-Mode matrix product is a key tensor operation
in tensor decompositions and is defined as the product of
a tensor X of size I1 × · · · × IN with a matrix A of size

J × In (denoted by X ×n A), resulting in a tensor of size
I1 × · · · × In−1 × J × In+1 × · · · × IN :

(X×n A)i1...in−1jin+1...iN =

In∑
in=1

xi1...iNajin .

In the following Section, we discuss our approach for
dynamic low-rank updates to a Tucker decomposition and
discuss how our approach reduces the computational complex-
ity involved in Tucker decompositions (including eliminating
or reducing some of the expensive operations), applied to (a
stream or sequence of) continuously evolving tensors.

III. OUR APPROACH

In this Section, we detail our streaming tensor decomposi-
tion algorithms. As explained in Section IV, it is apparent that
tensor analysis of a continuously-evolving tensor data stream
must be quick and responsive. If the original Tucker tensor
decomposition method is applied to each (full / large) tensor in
the stream of tensors, it would involve expensive SVDs on ma-
tricized tensors along each mode of the full tensor. The result
would be extremely slow tensor decompositions and infeasible
tensor analysis for large-scale real-time applications. So, for
large-scale applications that deal with constantly evolving data,
the dynamic updates to tensor decompositions must be faster
and efficient with minimal (or no) error due to the low-rank
updates.

The basic idea behind our approach for dynamic low-rank
updates is as follows. We compute the full tensor decompo-
sition for a particular snapshot of the tensor data; as the data
evolves over time, we utilize the tensor decomposition from
the previous stream along with the updates to the data in the
current stream (that is usually of low-rank) and determine the
(approximated) tensor decomposition for the current stream.
This approach eliminates expensive SVDs on matricized full
tensors but only requires SVDs (or to be precise, Tucker
decompositions) on matricized low-dimensional tensors.

Our approach is described using two different cases of low-
rank data updates that differ in the way the updates to tensor
data are observed or measured. The first case is as follows:
the data is observed or measured at different time instances,
and the entire data is recorded at each instance to capture
the state of the data at that time instance. Different tensors at
different time instances represent the evolution of data. The
second case is as follows: the data is observed or measured
initially and then only the updates to the data are measured
(in the graph or hypergraph parlance, nodes and edges or
hyperedges that are added or deleted are only recorded). We,
therefore, present two different variants of dynamic low-rank
tensor update algorithms.

A. Case 1: Stream of tensor snapshots
Consider a tensor of N modes of size I1×· · ·×IN that re-

flects the state of the data at current time t, X(t) ∈ RI1×···×IN

The objective is to find a (R1, . . . , RN ) decomposition of
X(t) such that:

X(t) ≈ G(t) ×1 A(t)
1 ×2 · · · ×N A(t)

N , (1)
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where G(t) ∈ RR1×···×RN is the core tensor and A(t)
n ∈

RIn×Rn (for n = 1 . . . N ) are the factor matrices.
We are given the Tucker decomposition of the tensor X(t−1)

from time t− 1; i.e.,

X(t−1) ≈ G(t−1) ×1 A(t−1)
1 ×2 · · · ×N A(t−1)

N .

Now, consider the rank of the updates to the tensor at
time t with respect to the previous time iteration t − 1
as k, where k < (R1, . . . , RN ). As a first step in our
approach, we augment each factor matrix A(t−1)

n ∈ RIn×Rn

(for n = 1 . . . N ) from time t − 1 with k column vectors
chosen randomly from a zero mean Gaussian distribution. This
step follows the ALTO technique proposed by Yu et al. [11],
in which the random column vectors are introduced for noise
perturbation to prevent the optimization algorithm from getting
stuck in the local optima.

We then make the augmented factor matrices orthonormal.
If Pn ∈ RIn×k represents the random column vectors chosen
for mode n, we find an orthonormal basis Qn ∈ RIn×k of
the column space of the component of Pn that is orthogo-
nal to A(t−1)

n using a Gram-Schmidt process (Note that the
component of Pn that is orthogonal to A(t−1)

n is given by
(I− A(t−1)

n A(t−1)T
n )Pn). The new augmented factor matrices

Bn ∈ RIn×(Rn+k) (for n = 1 . . . N ) that are orthonormal and
have k more column vectors than A(t−1)

n (for n = 1 . . . N )
are created as Bn = [A(t−1)

n Qn].

For the special case when k = 1, the computation of
augmented orthonormal factor matrices gets simpler. For each
mode n (for n = 1 . . . N ), we create a random column vector,
say pn, and then create an orthonormal basis q̂n of the column
space of the component of pn that is orthogonal to A(t−1)

n as

qn = pn − (A(t−1)
n A(t−1)T

n )pn and q̂n =
qn

‖qn‖
.

We then create the new augmented orthonormal factor
matrices Bn ∈ RIn×(Rn+1) (for n = 1 . . . N ) as Bn =
[A(t−1)

n q̂n] as well as an augmented core tensor H(t) of
size (R1 + k) × · · · × (RN + k) using the augmented factor
matrices Bn and current tensor X(t):

H(t) = X(t) ×1 BT
1 ×2 · · · ×N BT

N . (2)

As a next step, we form a rank (R1, . . . , RN ) approximation
of the augmented core tensor, resulting in the core tensor G(t)

of the decomposition of the given current tensor X(t):

H(t) ≈ G(t) ×1 C1 ×2 · · · ×N CN . (3)

Combining 1, 2, and 3, we obtain the factor matrices A(t)
n

(for n = 1 . . . N ) of the decomposition of the current tensor:
A(t)

n = BnCn

The algorithm for dynamic low-rank updates to the Tucker
decomposition in the case of a stream of tensor snapshots is
summarized in Algorithm 1.

Algorithm 1 Low-rank Updates to Tucker Decomposition:
Stream of Tensor Snapshots

Input: Tensor at current time step: X(t) ∈ RI1×···×IN

Rank R1, . . . , RN Tucker decomposition of tensor at previ-
ous time step: JG(t−1); A(t−1)

1 . . .A(t−1)
N K

Rank of updates: k
Output: Rank R1, . . . , RN Tucker decomposition of tensor

at current time step: JG(t); A(t)
1 . . .A(t)

N K
Step 1: Randomize, augment and orthonormalize factor
matrices
for n = 1 . . . N do

Pn = rand(In, k)
Dn = (I− A(t−1)

n A(t−1)T
n )Pn

Qn = orthonormal basis of column space of Dn

Bn = [A(t−1)
n Qn]

end for
Step 2: Create augmented core tensor of size (R1 + k) ×
· · · × (RN + k)
H(t) = X(t) ×1 BT

1 ×2 · · · ×N BT
N

Step 3: Perform rank R1, . . . , RN Tucker decomposition
on augmented core tensor to get final core tensor G(t)

H(t) ≈ G(t) ×1 C1 ×2 · · · ×N CN

Step 4: Obtain final factor matrices A(t−1)
1 . . .A(t−1)

N

for n = 1 . . . N do
A(t)

n = BnCn

end for

B. Case 2: Stream of low-rank updates

Now consider a tensor of N modes of size I1 × · · · × IN
that reflects the state of the data at the previous time iteration
t− 1, X(t−1) ∈ RI1×···×IN .

We have low-rank updates to the tensor at time t, and we
consider that the low-rank, say rank k, updates to the tensor
are specified as a k−way sum of outer products of N vectors
(N being the number of modes); that is, if ∆Y denotes the
low-rank updates to the tensor X(t−1), then the current tensor
at time t is given by:

X(t) = X(t−1) + ∆Y where ∆Y =
k∑

i=1

y(i)1 ◦ · · · ◦ y(i)N , (4)

where y(i)n represents the ith column of the matrix Yn (of size
In × k) that represents the update along the nth mode.

As in the previous case, the objective is to find a
(R1, . . . , RN ) decomposition of X(t) such that:

X(t) ≈ G(t) ×1 A(t)
1 ×2 · · · ×N A(t)

N , (5)

where G(t) ∈ RR1×···×RN is the core tensor and A(t)
n ∈

RIn×Rn (for n = 1 . . . N ) are the factor matrices.
We are given the Tucker decomposition of the tensor X(t−1)

from time t− 1; i.e.:

X(t−1) ≈ G(t−1) ×1 A(t−1)
1 ×2 · · · ×N A(t−1)

N . (6)
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Beginning from the low-rank approximation of X(t), and
combining 4 and 6:

X(t) ≈ G(t−1)×1 A(t−1)
1 ×2 · · ·×N A(t−1)

N +
k∑

i=1

y(i)1 ◦ · · · ◦y(i)N

We now denote the RHS in the above expression as X̂

and first augment the factor matrices of the decomposition
from time t − 1, i.e. A(t−1)

n ∈ RIn×Rn (for n = 1 . . . N )
with the low-rank tensor updates to create augmented matrices
[A(t−1)

n Yn] ∈ RIn×(Rn+k) (for n = 1 . . . N ). We then
accordingly “expand” the core tensor G(t−1) ∈ RR1×···×RN to
create an expanded core tensor Ĝ(t−1) ∈ R(R1+k)×···×(RN+k)

such that the new entries at (R1 + j, . . . , RN + j) (for
j = 1 . . . k) are set to one and all other new entries are set to
zero.

X̂ = Ĝ(t−1) ×1 [A(t−1)
1 Y1]×2 · · · ×N [A(t−1)

N YN ] (7)

The augmented matrices [A(t−1)
n Yn] (for n = 1 . . . N )

are not orthogonal. As a next step, we perform orthogonal
decomposition of the augmented matrices. If Dn denotes the
component of Yn that is orthogonal to A(t−1)

n (for n =
1 . . . N ), then Dn is given by (I − A(t−1)

n A(t−1)T
n )Yn. We

find an orthonormal basis Pn ∈ RIn×k of the column space
of Dn using a Gram-Schmidt process. Then, for n = 1 . . . N

[A(t−1)
n Yn] = [A(t−1)

n Pn]

[
I A(t−1)T

n Yn

0 PT
nDn.

]
(8)

Let the first matrix in the above product be Qn and the
second matrix be Tn. Qn ∈ RIn×(Rn+k) is orthogonal and
Tn ∈ R(Rn+k)×(Rn+k) is small.

For the special case when k = 1, the orthogonal decompo-
sition of augmented matrices gets simpler. For each mode n
(for n = 1 . . . N ), we create an orthonormal basis p̂n of the
column space of the component of yn that is orthogonal to
A(t−1)

n as

pn = yn − (A(t−1)
n A(t−1)T

n )yn and p̂n =
pn

‖pn‖
.

Then, for n = 1 . . . N

[A(t−1)
n yn] = [A(t−1)

n p̂n]

[
I A(t−1)T

n yn
0 ‖pn‖

]
We then create an augmented core tensor H(t) of size (R1+

k)× · · · × (RN + k) as

H(t) = Ĝ×1 T1 ×2 · · · ×N TN . (9)

As a next step, we form a rank (R1, . . . , RN ) approximation
of the augmented core tensor, resulting in the core tensor G(t)

of the decomposition of the current tensor X(t):

H(t) ≈ G(t) ×1 C1 ×2 · · · ×N CN . (10)

Combining 5, 7, 8, 9 and 10, we obtain the factor matrices
A(t)

n (for n = 1 . . . N ) of the decomposition of the current
tensor: A(t)

n = QnCn.
The algorithm for dynamic low-rank updates to the Tucker

decomposition in the case of stream of low-rank tensor updates
is summarized in Algorithm 2.

Algorithm 2 Low-rank Updates to Tucker Decomposition:
Stream of Low-rank Tensor Updates
Input: Low-rank (rank k) updates to tensor at current time

step with respect to previous time step: ∆Y =
∑k

i=1 y(i)
1 ◦

· · · ◦y(i)
N (y(i)n represents the ith column of the matrix Yn ∈

RIn×k)
Rank R1, . . . , RN Tucker decomposition of tensor at previ-
ous time step: JG(t−1); A(t−1)

1 . . .A(t−1)
N K

Output: Rank R1, . . . , RN Tucker decomposition of tensor
at current time step: JG(t); A(t)

1 . . .A(t)
N K

Step 1a: Augment factor matrices with low-rank updates
and expand core tensor
Augmented factor matrix for mode n: [A(t−1)

n Yn]
Expanded core tensor Ĝ of size (R1 +k)×· · ·× (RN +k):
∀j : j = 1 . . . k, Ĝ(R1 + j, . . . , RN + j) = 1 and
Ĝ(1 : R1, . . . , 1 : RN ) = G(t−1)

Step 1b: Perform orthogonal decomposition of augmented
factor matrices
for n = 1 . . . N do

Dn = (I− A(t−1)
n A(t−1)T

n )Yn

Pn = orthonormal basis of column space of Dn

Qn = [A(t−1)
n Pn]

Tn =

[
I A(t−1)T

n Yn

0 PT
nDn

]
[A(t−1)

n Yn] = QnTn

end for
Step 2: Create augmented core tensor of size (R1 + k) ×
· · · × (RN + k)
H(t) = Ĝ×1 T1 ×2 · · · ×N TN

Step 3: Perform rank R1, . . . , RN Tucker decomposition
on augmented core tensor to get final core tensor G(t)

H(t) ≈ G(t) ×1 C1 ×2 · · · ×N CN

Step 4: Obtain final factor matrices A(t−1)
1 . . .A(t−1)

N

for n = 1 . . . N do
A(t)

n = QnCn

end for

IV. RELATED WORK

Matrix decompositions and low-rank updates to matrix
decompositions are predecessors to tensor decompositions and
low-rank updates to tensor decompositions. Matrix decompo-
sitions have been proven to be very useful in data mining
[12], [13]. Two techniques for low-rank updates to matrix
decompositions, namely, the technique by Brand [14] and that
by Koch and Lubich [15] for updating truncated SVD, are
considered superior for their speed and accuracy.

While low-rank updates to matrix decompositions have been
intensively studied, low-rank updates to tensor decompositions
remains under-explored. The problem is extremely challenging
due to the inherent complexity of tensor analysis. There are
different higher-order extensions to low-rank matrix update
technique from Brand and that from Koch and Lubich. For
example, O’Hara has extended Brand’s technique to tensors
[16], and Koch and Lubich have also extended their tech-
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nique to tensors [17]. The essential difference between the
Brand and Koch-Lubich based techniques is that the Brand
technique will be accurate on large-rank changes, but become
computationally expensive for such changes. The Koch and
Lubich technique is efficient regardless of rank, but becomes
inaccurate if the changes are large in magnitude.

There are other prior solutions proposed for streaming ten-
sor decompositions [18], [11]. These prior work have achieved
success in real applications, but there still remains scope
for improvement in adapting these solutions to large-scale
applications. The challenge lies in extending and applying the
best technique in the most effective way to real applications.
This is our focus in this paper.

Our approach distinguishes two different practical scenarios
of measuring and recording data updates and presents different
variants of dynamic low-rank update algorithms that are ap-
plicable to the scenario and efficient in terms of computation
and memory usage.

V. RESULTS

We provide a detailed experimental study on the evaluation
of our techniques to improve the response time of tensor
analysis while analyzing dynamically changing real data.

A. Data Sets

We use multiple real sparse tensor data sets to evaluate
the techniques described in our work. Data used in our
experiments are: 1) Facebook social network data from [19],
2) Enron email data from [20], and 3) cyber data gathered
internally at our organization using our network traffic sensor.

The Facebook data set is a 63891 × 63891 × 1591 tensor
with 737934 non-zero entries, representing activities between
63891 Facebook users over 1591 days. We divide the original
data set into a base tensor and a low-rank update to the base
tensor for our experiment. The base tensor represents activities
during 1590 days, and the activities during the remaining day
(that was particularly chosen for testing purpose based on prior
knowledge on the data set) are gathered as updates to the base
tensor. We do a (20, 20, 10) rank Tucker decomposition of this
data set in our experiments.

The Enron email data set is a 105×105×27 tensor with 5418
entries, representing emails exchanged between 105 users over
a period of 27 months. As in the case of the Facebook data
set, we divide the Enron data set into a base tensor and a low-
rank (specifically, rank-one) update to the base tensor. We do
a (10, 10, 5) rank Tucker decomposition of this data set in our
experiments.

The cyber data gathered at our organization has multiple
attributes attached to it - timestamp, sender IP, receiver IP,
sender port, receiver port, protocol, and many others. This
enables us to create multiple tensor data sets by selecting
different subsets of attributes. Further, it should be noted that
these tensor data sets are time-evolving data sets.

For this experiment, we create two different tensor data
sets from the cyber data gathered. The first cyber data set
(referred as “Cyber1” for further discussion) is a four mode

data set, with the modes being timestamp, sender IP, receiver
IP, and receiver port. We create two snapshots of this data
set (comprising of network messages gathered within two
different time intervals spanning an hour). The second cyber
data set (referred as “Cyber2” for further discussion) is also
a four mode data set, with the modes being sender IP,
receiver IP, receiver port, and connection state. We create
three snapshots of this data set (gathering network messages
at one hour intervals).

The size of the cyber data sets used in our experiments
are listed in Table I. We do a (10, 10, 10, 5) rank Tucker
decomposition for all cyber data sets in our experiments.

Data set Size Non-zeros

Cyber1, initial snapshot [3819,228,1118,391] 38595
Cyber1, update [512,179,310,87] 3644

Cyber2, snapshot 1 [233,1631,446,12] 5171
Cyber2, snapshot 2 [245,1991,475,12] 5985
Cyber2, snapshot 3 [234,1554,454,12] 5347

TABLE I: Cyber data sets in our experiments

B. Experimental System

We use a modern multi-core system to run our tests and
evaluate our techniques. The system we use is a quad socket
8-core system with Intel Xeon E5-4620 2.2 GHz processors
(Intel Sandy Bridge microarchitecture chips) and has 128 GB
of DRAM; it supports 32 concurrent threads (64 threads if the
Hyper-threading feature is used, which we do not use for our
experiments). We use the gcc compiler and we use OpenMP
library to parallelize the computations in our algorithms.

C. Performance Analysis

To the best of our knowledge, the state-of-the-art imple-
mentations of streaming tensor decompositions ([18], [16],
[11]) are in MATLAB. However our implementation is in
C/C++ and hence we observe orders of magnitude difference
in execution time between our implementation and other state-
of-the-art implementations (that are publicly available). Hence
we do not present any performance comparison with other
implementations in this Section. In the implementation of our
dynamic low-rank update algorithms, we use optimized sparse
tensor data structures and optimized memory-efficient Tucker
decompositions that are described in [3] and implemented in
ENSIGN toolbox. These optimizations enable and contribute
to improved sequential and parallel performance of the stream-
ing tensor decompositions described in this paper.

The version of the low-rank update algorithm (recall the
two cases in Section III) that is used for the experiments is
as follows: Version (or case) 1 for Cyber2 data set that has a
stream of three snapshots, and Version (or case) 2 for other
data sets that have an initial snapshot followed by a stream of
just the updates. The rank of the updates in our experiments
are as follows: (1) for the Enron data set, we set a rank one
update, (2) for the Facebook data set, we set the rank of the
updates to be 3, (3) for the Cyber1 data set, we set a rank
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one update, and (4) for the Cyber2 data set, we set a rank 5
update.

We first discuss the performance benefits demonstrated
by our algorithms for dynamic low-rank updates. We define
“baseline” case to be the one in which full tensor decom-
positions are applied to every snapshot of the tensor data
and the “optimized” case to be the one in which streaming
tensor decompositions (sequential version) are done through
our low-rank update algorithms. Table II shows the speedup
achieved with the optimized version over the baseline version.
For the Facebook, Enron, and Cyber1 data sets that have two
snapshots recorded, two full tensor decompositions are done
in the baseline version. For the optimized version of these
data sets, one full tensor decomposition and one dynamic low-
rank update are done. For the Cyber2 data set that has three
snapshots recorded, three full tensor decompositions are done
in the baseline version. For the optimized version of Cyber2
data set, one full tensor decomposition, and two dynamic low-
rank updates are done. The speedup (1.78x to 2.46x) achieved
due to our dynamic low-rank updates is quite significant.

Data set Baseline Optimized Speedup
[Full decompositions] [Full decompositions

+ Low-rank updates]

Facebook 2 1 + 1 1.98x
Enron 2 1 + 1 1.78x

Cyber1 2 1 + 1 1.92x
Cyber2 3 1 + 2 2.46x

TABLE II: Speedup from low-rank updates achieved with the
sequential version of streaming tensor decompositions

As far as a direct comparison of absolute performance (i.e.
comparison of execution time of a full tensor decomposition
and the corresponding low-rank streaming decomposition)
is concerned, we observe up to two orders of magnitude
improvement in all the data sets.

Another measure that we evaluate to demonstrate the ef-
fectiveness of our approach is the difference in fit (defined in
Section II) between the output of a full tensor decomposition
and that of the corresponding low-rank streaming decomposi-
tion. In our experiments, for all the data sets, the difference
in fit that we observe is within 1e − 3 due to the streaming
low-rank updates.

Further, from the analysis of the output of tensor decompo-
sitions of all data sets, we observe that the components (rep-
resented by the factor matrices and core tensor) resulting from
the streaming decomposition capture the multi-dimensional
patterns that express the new state of the tensor after the low-
rank updates. For example, the base tensor of the Facebook
data set represents wall posts involving multiple posters and
wall owners across different different days (different patterns
of daily activity). The low-rank update to the Facebook tensor
represents posts from multiple posters to one wall owner on
one particular day (wall owner’s birthday). The streaming de-
composition, in addition to the significant original components
from the base tensor, produces a new component representing

this unique single-day pattern of wall posts on wall owner’s
birthday.

We now discuss the performance of the parallel version
of our algorithms for dynamic low-rank updates. The size
of low-rank updates to the Facebook and Enron data sets
in our experimental evaluation is very small. Hence we do
not see any benefits while using more than 2 cores for
the parallel execution of streaming tensor decompositions on
Facebook and Enron data sets. The speedup on 2 cores over
the sequential implementation is 1.74x and 1.54x, respectively,
for Facebook and Enron data sets.
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Fig. 1: Parallel speedup for up to 32 threads on the Cyber data
sets with our parallel version of streaming tensor decomposi-
tions

Figure 1 shows the speedup achieved by the parallel im-
plementation of streaming tensor decompositions using low-
rank updates over the sequential implementation, for up to 32
threads, for the Cyber data sets. The parallel speedup shows
that there is improvement with increasing number of threads
although the scaling tapers for higher cores as the problem
size is not large enough (across all modes of the tensor) to
fully utilize the parallel cores.

VI. CONCLUSION

We have made key contributions in this paper in order to
enable tensor decompositions as a viable analysis tool for
large-scale real applications that have continuously evolving
data. We have developed new algorithms for dynamic low-
rank updates to Tucker tensor decompositions and have imple-
mented parallelized versions of these algorithms to use them
in a more effective way in real applications. We have presented
the effectiveness of our approach in terms of rapid execution
of streaming tensor decompositions, using sequential and
parallelized versions of our algorithms.
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