
Cash: Distributed Cooperative Buffer Caching

Christopher DeCoro
�

Harper Langston† Jeremy Weinberger‡

Courant Institute of Mathematical Sciences
New York University

Abstract

Modern servers pay a heavy price in block access time on disk-
bound workloads when the working set is greater than the size of
the local buffer cache. We provide a mechanism for cooperating
servers to coordinate and share their local buffer caches. The co-
ordinated buffer cache can handle working sets on the order of the
aggregate cache memory, greatly improving performance on disk-
bound workloads. This facility is provided with minimal commu-
nication overhead, no penalty for local cache hits, and without any
explicit kernel support.

Keywords: cooperative caching, coordinated caching, hint-based
caching, buffer cache

1 Introduction

As local area networks continue to get faster and cheaper, it has be-
come very attractive to move information from a given system to
other machines a short network hop away. The argument for cluster
computing in [Anderson et al. 1995] is well accepted as a good way
to get more computing power for your money. As system and local
bus speeds get faster, however, the cost of hitting a disk for needed
blocks becomes exorbitant. When multiple servers in a cluster all
need to access a common set of files, and the application work-
ing set is larger than the memory of any one server, many cycles
are wasted churning blocks through the local buffer cache. Opera-
tors with excessive cash can solve this problem by spending it on
RAM. Smart operators will take a look at Cash, an application-level
shared buffer cache for cluster applications that access a common
file repository.

We provide a library API for any application to open and read
files through the shared cache. This library is a thin layer between
the application and any locally visible file system. Thus, we are
agnostic as to the actual file location; that is, whether the common
file store is replicated on each server or visible via a shared NFS
mount. We constrain our efforts to support read-only access to the
file store.

When designing a coordinated caching system, there is an im-
portant trade-off between local and global performance. For certain
policies, servers can pay a heavy price in local performance in or-
der to be as altruistic as possible. The seminal analysis of these
trade-offs can be found in [Dahlin et al. 1994]. We attempt to pro-
vide a framework that at least will not hurt performance, at best can
improve local and global performance, and can be easily modified
to support alternative policies. We specifically intend to improve
cluster performance on read-only workloads where the size of the
working set is greater than the main memory of any given server.

�

e-mail: cdecoro@cs.nyu.edu
†e-mail: harper@cs.nyu.edu
‡e-mail: jeremy@cs.nyu.edu

2 Related Work

Generally speaking, the algorithms and problems faced in designing
a distributed, cooperative buffer cache are very similar to those in
designing a distributed shared memory system such as in Ivy [Li
and Hudak 1986]. Our decentralized manager design is informed
by the analysis of global page management in this work. Our work
differs in that cooperative caching is purely an optimization. We
do not have to provide perfect access to the cache, as long as cache
misses occur quickly.

Our work is largely motivated by Dahlin’s study on Cooperative
Caching [Dahlin et al. 1994], an intended component of the Berke-
ley xFS [Dahlin 1996; Anderson et al. 1995] file system. We rely
upon the simulations done by this group in designing an algorithm
similar to N-Chance Forwarding. However, the xFS studies assume
that all cache servers read blocks from a centralized file server, and
that the file server provides special support for cache metadata. Our
system can run over consistency-averse systems such as NFS. Our
algorithm is also very similar to to the hint-based algorithm de-
scribed in [Cuenca-Acuna and Nguyen 2001]. We found only sim-
ulations in this work, where we have provided a working imple-
mentation.

Other cooperative caching systems have been designed and sim-
ulated with reference to the xFS simulations. The Global Memory
Service [Feeley et al. 1995; Feeley 1996] is one such technique.
Sarkar and Hartman provide a comparative analysis of N-chance
forwarding, GMS, and hint-based techniques in [Sarkar and Hart-
man 2000]. We opt for an algorithm that combines features of N-
chance forwarding and hinting to allow for a simple system that can
run without any support by a specialized central file server.

Our caching algorithm can also be viewed in the context of
application-level caching. A target application for our code is a
cluster-based web server; thus, web caching protocols such as In-
ternet Cache Protocol (ICP) [Wessels and Claffy 1997] and Cache
Array Routing Protocol (CARP) [Valloppillil and Ross 1998] are
relevant. ICP is a broadcast-based query system which requires a
network broadcast on each file request. This type of protocol is
easy to reject for a block-based cache, due to high network over-
head. CARP is a stable hash-based block location protocol. We
provide more flexibility in block placement than what is possible
with hash-based techniques.

We implicitly assume a round-robin or similar “fair” load-
balancing request distribution policy across the member servers.
This is a common approach for naı̈ve load-balancing. However,
alternative methods exist, such as Locality-Aware Request Distri-
bution (LARD) [Pai et al. 1998]. LARD is an attempt to externally
manage the cache of each server by distributing requests to servers
that are likely to already have the item in cache. LARD promises
to provide better performance than lower-level cooperative caching.
As an application of the end to end argument [Saltzer et al. 1984],
one might argue that the block level may be too low for cache ser-
vices for many applications. However, LARD requires specialized
kernel support in order to function at all, where our system can be
provided entirely at application level. This provides a system de-
signer with the opportunity to replace our LRU algorithm with one
better suited to a given application. We can also argue via end to

end that allowing the application user to provide his own caching
policy as well as request distribution policy is preferred. A topic of
future research would be study cooperative caching algorithms in
the context of non-uniform request distribution policies.

3 Architecture

The Cash architecture on the local machine is divided into two
parts: a library linked into applications and a manager process. As
illustrated in Figure 1, each library instance communicates with the
manager via a Unix domain socket. The manager and each library
instance all mmap a single well-known shared cache file in order to
avoid additional data copies between the manager and the library.

Cash is intended to be used in a cluster configuration, where all
servers accessing the shared file store run an instance of Cash. As
shown in Figure 2, every Cash server should communicate with
every other Cash server to maximize the size of the coordinated
cache.

copen
cread
cclose

copen
cread
cclose

(Web Server)

API

Library

API

Library

(Web Server)

Application

MANAGER

Application

mmap

mmap

mmap

. . .
API

Library

(Web Server)

Application

Number 1 Number NNumber 2

cclose
cread
copen

CACHE

Socket Socket Socket

mmap

Figure 1: Cash architecture on a single local machine

4 System Interface

Clients view Cash through a standard file-system interface (simi-
lar to the fstreams interface of the C Standard Library). The only
difference to the user (other than the fact that the file system is cur-
rently read-only, an artifact of our current implementation that will
be changed in a future release), is faster performance through the
transparent use of distributed buffer caching. No extra requirements
are made of the client applications; a principal design goal of Cash,
successfully realized, is that operations can be directly mapped onto
Unix kernel I/O system calls. This allows us the flexibility, if de-
sired, to integrate Cash seamlessly into kernel of a Unix-like oper-
ating system.

A Cash cluster is made of up a set of machines, each running
an instance of Cash. Each instance consists of three major compo-
nents:

� Client Applications, the end-user programs that make use of
Cash services.

MANAGER

MANAGER

MANAGER

MANAGER MANAGER

Figure 2: A cluster of Cash servers

� Application Interface Library, which translates Unix-like file
I/O calls into the internal Cash interface.

� Cache Manager, the system-wide manager that controls re-
sources on the local machine, and maintains the server’s par-
ticipation in the wider cluster.

Some machines may not run any client applications, existing
solely to provide memory to other machines in the cluster. These
are known as pure servers, as opposed to standard servers, which
do run client applications.

Client applications, such as a webserver or database, will use
the interface exported by the Application Interface Library to com-
municate with a Cache Manager process that runs on the current
machine.

4.1 Programming Interface

As previously discussed, the Cash interface is all but transparent
to the application programmer, and maps directly onto C Standard
Library functionality. In our implementation, to avoid name clashes
with those standard functions, we replace the fopen, fread and
fclose functions with the following:

� CFILE* copen(char* filename,char* mode)

� int cread(void* buffer,int size,int n,CFILE* file)

� void cclose(CFILE* file)

CFILE is an opaque data structure that is used by the library to
represent an opened file. The client acquires a CFILE object by
calling the copen function and providing it with the name of a file
and a mode string as in the C Standard Library function fopen.
The function cread will read n elements, each of size size, into
buffer from the file represented by the file parameter. The
return value is the number of items read. The function cclose
will deallocate a file handle and reclaim resources.

For communication between the client processes and the man-
ager process, we use the Unix Domain Sockets method of IPC for
communicating control messages and synchronizing both client and
server. Additionally, we use the Memory-Mapped Files feature to
share I/O data between manager and client.

We now look in detail at the implementation of each function:

struct CFILE �
char* filename; //name of the file
char* base; //pointer to mmap’ed file data
int range offset=0; //offset of mmap’ed data in file
int range length=0; //length of mmap’ed data
int current offset=0; //current offset in file�

;

int client socket = -1;
CFILE * copen(char* filename, char* mode)

�
//Once per system, initialize the manager process
if(!file exists(CACHE SOCKET NAME))

�
fork manager process();�

//Once per process, initialize the communication socket
if(client socket == -1)

�
client socket = create and bind socket();�

CFILE* file = new CFILE;
file->filename = filename;
file->fd = open(CACHE FILE NAME);
return file;�

Figure 3: Implementation of the copen function call. The
CACHE SOCKET NAME and CACHE FILE NAME correspond to the
absolute file names of the well-known Unix domain socket file and the
global system cache file.

4.1.1 copen

Before reading the contents of a file, the application must call the
copen function to generate a valid file handle, and initiate com-
munication with the manager process. Because a manager process
must be running on the machine, and we do not want to require
applications or administrators to initialize the manager explicitly,
copen will fork off a manager process if one does not yet exist on
the current machine. The copen function guarantees exclusivity
by testing to see if the well-known manager socket file exists, and
only forks off the manager if it does not.

The copen function must also initialize the sending and receiv-
ing sockets for communication with the server. First, a Unix do-
main socket in datagram mode is created to send request messages
to the manager’s well-known address (in our implementation, this
was ”/var/tmp/cashsocket”). Second, a new ephemeral socket is
created to receive responses from the server.

Finally, copen opens the global cache file for reading and re-
turns a new CFILE pointer to the caller. This file will later be used
to map data blocks into process address space. The CFILE pointer
tracks the current position in the file (in current offset), the location
of the data file as currently mapped into memory (base), and the
starting offset of that file in the mapped portion (range offset), and
length of the currently mapped portion (range length).

A description of the copen functionality is given in a pseu-
docode that aims to be as C-like as possible; see Figure 3.

4.1.2 cread

Once the application has created a valid file handle with copen,
it may then use cread to retrieve data from cache. The cread
function will send simple messages to the server indicating the file
it intends to read, as well as the starting offset and length of the read
operation. The function blocks until receiving a response from the
server.

We have plans for implementing an asynchronous interface for
Cash. The main issue involves creating a file descriptor for use
in the select function. This is necessary, because in an asyn-
chronous, event-driven system, the application will use the se-
lect call to wait on all open file descriptors, and wakeup when
activity occurs on one of those descriptors. If Cash were imple-
mented in the kernel, we could directly implement this functionality
for our descriptors. However, in its current state, there is no way to
have the select function block on one of our CFILE pointers. The

int cread(void* buffer,int size, int n, CFILE* file)
�

int read bytes = size * n; //bytes still to be read
int copy bytes = 0; //bytes copied so far
//Try to avoid an IPC by using buffered data
if(file->current offset is between file->range offset and

file->range offset + file->range length)
�

copy bytes = read bytes - ((file->current offset + read bytes) -
(file->range offset + file->range length));
read bytes -= copy bytes;
memcpy(buffer, file->base + (file->current offset -

file->range offset), copy bytes);

file->current offset += copy bytes;
buffer += copy bytes;�

//Continue to send messages and reading bytes
while(read bytes > 0)

�
send read message(file->filename, file->current offset, read bytes);
int offset, length;
get reply message(&offset, &length);
file->base = mmap(file->fd, offset, length);
file->range offset = offset;
file->range length = length;
memcpy(buffer, file->base, length);
ptr += length;
file->current offset += length;
read bytes -= length;
copy bytes += length;�

return copy bytes;�

Figure 4: Implementation of the cread function call

solution is to introduce an additional function, cgetdesc, that re-
trieves the file descriptor for the communication socket. This will
be used in select, and will cause the application to resume when
communication is detected from the manager.

The response message from the server will indicate the offset and
length of the data in the system cache file. The cread function will
use the mmap system call to map this data into the current process
address space, and to store a pointer to this newly-mapped region
in the CFILE structure. The function will then copy as much data
as possible into the output buffer, and will update the other control
variables appropriately. The process of sending messages, receiving
responses, and accessing mapped data will continue until all of the
requested bytes have been read.

It is possible that the number of bytes requested by the user is
significantly smaller than the number of bytes returned by the man-
ager, which operates on blocks of 4KB. For example, an application
may chose to read the file only one byte at a time. In a naı̈ve im-
plementation, this would cause an IPC on each read. In our system,
however, we buffer the previously read block, and if possible, we
use that buffered data to service the client. If the user request can be
handled solely with the data in the buffer, no IPC is needed at all.
Otherwise, if the requested data is larger than the buffer, we copy
the entire buffer into the output, and proceed to send requests to the
manager as usual. Pseudocode for cread is given in Figure 4.

4.1.3 cclose

Finally, the cclose function will delete the CFILE pointer that
was created back in copen, and reclaim its resources. Like
copen, the cclose function does not need to access the manager
or perform an IPC.

4.2 Administrator Interface

It is the administrators responsibility to ensure that certain set-
tings are present before Cash-enabled programs are run. The
CASH BINDIR environment variable needs to be set to the loca-
tion of the Cash manager program, in order to inform the library
linked into each process of the location of the manager. The man-
ager also reads the CASH CACHESIZE environment variable to
allow configuration of the local cache size.

The manager needs to provide a configuration file with the IP
addresses of each machine that is in the cluster. This may include
the current machine, as the Cache Manager will recognize its own
IP address and not attempt to send requests to itself. Cash requires
this information, as the lack of a single, centralized server requires
some ability to determine the other machines in the cluster.

5 Implementation

5.1 Block Manager

Like other distributed shared memory systems, we need a manager
for locating and relaying blocks between participating nodes. Our
block manager has two critical design features: first, it is com-
pletely decentralized, and second, it does not require network com-
munication before every block request. We provide a manager pro-
cess that runs as a daemon on every participating node. This man-
ager listens on a well-known UDP port for the following types of
messages:

� LOCATION: “Block A is at node X.”

� BLOCK REQUEST: “Send a copy of block A to node Y.”

� BLOCK RESPONSE: “Here is block A” or “Nobody has a
copy of block A.”

� FORWARD: “Here is the last cached copy of block A. Please
store it.”

Each manager keeps a local table of hints that indicate which
manager is caching or knows where to find a given block. This hint-
ing algorithm is similar to the one described in [Sarkar and Hartman
2000]. When the manager is first started, this hint table is empty.
Over time, the manager will begin to receive requests for blocks
from the local machine. If a block is not found in the local cache,
and there is no hint for this block, the manager assumes there are
no cached copies available. At this time, the manager will begin
caching the block locally. After delivering the block to the local
application, the manager broadcasts a LOCATION message to all
other known managers. The other managers will record this new
hint in their tables. This is the only broadcast in our protocol.

Every block manager believes that its hint table is authorita-
tive. If a BLOCK REQUEST from another manager is received, and
no hint is present, the manager will respond with a false BLOCK
RESPONSE, indicating that no manager is caching the requested
block. If a hint is available and points to the current manager, the
manager will issue a true BLOCK RESPONSE containing the bytes
of the requested block. If a hint is available and points to a differ-
ent manager, the manager will forward the request to the indicated
manager. Thus, requests are forwarded one hop at a time until they
reach a manager capable of responding true or false.

Block managers are permitted to forward blocks to one another
at any time via the FORWARDmessage. Upon receiving a forwarded
block, the manager is expected to keep the block in its local cache
for some period of time. Global hints are not expected to remain
perfect when forwarding occurs. Only the sender and receiver of
a FORWARD message will update their hint tables. However, given
that all hosts were aware of an initial manager for a given block
via a broadcasted LOCATION message, block requests will always
follow an acyclic graph across the managers to a node who can
positively say “yes” or “no”. Sarkar and Hartman found that sim-
ulations of a similar hint-based protocol resulted in requests being
forwarded four times or less 99.998% of the time ([Sarkar and Hart-
man 1996]).

A sample timeline of our protocol can be found in figure 5. At
time t0, node X loads block A, and broadcasts a LOCATION to all

nodes. At t1, node X forwards block A to node Z. Only node X and
node Z update their hint tables. At time t2, node Y gets a local re-
quest for block A. Y’s hint table says to send a BLOCK REQUEST
to node X for block A. Node X knows that node Z probably can
locate block A, and forwards the request to Z. Node Z still has the
block, and responds with a true BLOCK RESPONSE, containing
the data of block A.

Cache
Block A

Eviction

LOCATION
(A, X)

LOCATION
(A, X)

ZYX

Block A
Read

BLOCK REQ
(A,Y)

FORWARD
(A, buf, len)

BLOCK REQ
(A,Y)

BLOCK RESP
(A,data,len)

Figure 5: Sample timeline of interactions dictated by the Block
Manager protocol

5.2 Local Cache

We provide a two-tiered LRU buffer cache, controlled by the dis-
tributed manager. Blocks in the cache are designated as either
master or non-master, depending on whether or not there are other
copies of the block. Master copies are the only known global copy
of a block, and therefore have strictly higher priority than non-
master copies. Non-master copies are believed to be a duplicate
of blocks in another node’s cache. Since duplicate copies can al-
ways be reloaded with a fast network read, non-master blocks are
low in value and always evicted first. Simulations in [Leff et al.
1996] show that it is almost never worthwhile to discard the only
cached copy of a block in order to keep a duplicate in the cache.

Blocks become master copies when they are loaded from disk.
Our algorithm loads a block from disk if there is no hint, or the hint
exists, but the response is “no”, or if the response times out. Thus,
the local copy is believed to be the only one in the global cache.
Blocks become non-master copies when they are received from an-
other node via a BLOCK RESPONSE. It is obvious that at the mo-
ment the request completed, the other block was certainly available
as a master at the responding node, and so the copied block is a
duplicate.

Evictions are a potential source of inaccuracies in the global hint
table. When an eviction is necessary, the queue of non-master
blocks is searched first for a block to discard. If no non-master
blocks are available, the LRU master block is evicted and sent via a
FORWARD to a randomly selected node. The target node is expected

to cache the forwarded block. In our current implementation, the
forwarded block is inserted at the front of the master LRU list, as
if it had been recently referenced. If the target node needs to do
an eviction to make space, it is not permitted to forward another
block. This limitation is needed to ensure that forwards do not cas-
cade through the network, causing more hints to become inaccurate,
and using extra network bandwidth. Thus, the target will discard a
master block instead of forwarding it if no non-master blocks are
available.

6 Evaluation

In order to evaluate the effect of Cash, we built a small web server
as our test application. The web server is simple and asynchronous,
using libasync [Mazières et al. 2000]. Further, it is based on
the Single Process Event Driven (SPED) architecture as described
in [Pai et al. 1999] and visualized in figure 6. It is designed to use
the basic calls, fopen, fread, and fclose, independently from
Cash in order to prove the ease with which we can incorporate our
new copen, cread, and cclose.

Accept
Connection

Read
Request

Find
File

Send
Header

Read File
Send Header

E
V
E
N
T

D
I
S
P
A
T
C
H
E
R

Figure 6: Single Process Event Driven (SPED) architecture for our
simple web server test application

In order to evaluate the power of Cash with our test application,
we look for ways to generate typical workloads over a short pe-
riod of time and measure them. Based on the work of [Arlitt and
Williamson 1996], we wish to model invariants such as file types,
file size distribution, concentration of file requests, etc. By doing
this, we can test how Cash improves the performance of our web
server over time. By adding more than one Cash server, we expect
dramatic improvement. Additionally, we wish to study the effect of
a warm versus cold cache to see if there is increased performance
as in [Kim et al. 2000].

The work of [Barford and Crovella 1998] uses the invariant mod-
els to build representative web server workloads. They use a vari-
ety of probability distribution models to build the typical workload.
For example, to build the total number of requests, they observe
the “concentration of requests” invariant by using Zipf’s Law. For
example, among 2000 files, the most popular may be requested
200,000 times when building a request model, in which case we
have � 140,000 requests that are split among the other 1999 files,
some only being requested once. File sizes are built based on log-
normal and Pareto distribution models, explicitly detailed in the Ap-
pendix. Further, it is predicted that 30% of files will be HTML with

embedded images, 38% will be embedded images and 32% will
be plain HTML files for a typical image and HTML web site. A
lognormal distribution is used for modeling the frequency at which
specific files will be requested. Bursts of activity are also modeled
as off times, using Weibull and Pareto distributions.

We employ the use of [Barford and Crovella 1998]’s Scalable
URL Reference Generator (SURGE) in order to build a typical
workload for testing Cash. For our tests, we set our web site to
10,000 documents, ranging in size from 512 bytes to 1.5 MB, with
a mean size of � 20 KB (for a total web site of size � 200 MB).
Further, we make the most popular document able to be requested
50,000 times, resulting in Zipf’s Law building � 480,000 total re-
quests for a single session. The time to complete a session depends
on the speed of completed requests; i.e.,2500 KB/s transfer rate im-
plies we can download each of the 20 KB average size requests of
all 480,000 requests in approximately one hour (64 minutes). If we
run a test for only five minutes, the total size requested would be

� 9600 KB. Of course we cannot complete the 480,000 requests
in five minutes; however, due to the files distribution, our results
show that even though we may only complete 40,000 requests in
five minutes, we will see at least 5,000 distinct files if we have a
transfer speed of 2500 KB/s.

Using this initial setup, we ran SURGE for five-minute intervals,
and a changing number of cash-implemented servers and client pro-
cesses where we fix the number of client and server machines at 4
each (each server has a replica of the web site generated by SURGE
and each client requests a different distribution of files based on log-
normal model using different seed values to guarantee each client
does not requests the documents in the same order). We begin with
each server not using Cash, then each server using Cash with no
communication amongst each other. We follow by having each
server in communication with only one other server, and we end
by having each Cash server aware of each other, so we have all-
to-all (4-4) communication. For each client machine, we increase
the number of client processes from 1 to 5 where each client pro-
cess runs fifty threads, each requesting documents as dictated by
our setup.

Initial results with SURGE were not promising. Figure 7 shows
that as we increase the number of client processes for each setup,
the mean transfer delay time decreases slightly when we use one-
to-one communication, but the delay increases when we have all
four servers requesting documents from each other. Additionally,
figure 8 shows that the KB per second transferred increases slightly
for one-to-one communication, but it decreases for all-to-all com-
munication.

Obviously, these results are not what we had hoped for. How-
ever, several aspects are encouraging. For example, we have real-
ized that while SURGE gives a good distribution of files to be re-
quested, the actual software is not good at handling the number of
requests required to truly display the potential Cash has when over-
taxing the web server. Hence, the bottleneck seems to be in SURGE
being dramatically slower than our transfer rate since we were un-
able to reach a state of maximum transfer rate on our machines.
Since all-to-all communication performs almost as well as all of
the other tests, once we hit maximum transfer rate, Cash should be-
gin to perform substantially better. As a result, we are turning to the
use of httperf [Mosberger and Jin 1998], a more powerful tool for
testing web server performance. By incorporating httperf with the
valid file distribution models of SURGE based on web invariants,
we believe we can more accurately test Cash.

Additionally, we are beginning work on incorporating Cash with
a more typical web server such as Apache, since unnecessary la-
tency may be introduced by our implementation of a simple SPED
web server, and Apache may more appropriately display the awe-
some potential of Cash.

1 1.5 2 2.5 3 3.5 4 4.5 5
0.05

0.1

0.15

0.2

0.25

0.3

Number of Client Processes per Client

M
ea

n
T

ra
ns

fe
r

D
el

ay

Mean Transfer Delay versus number of CPs per Client Machine (fixed at 4)

No Caching
Caching − No Communication
One−to−One Communication
All−to−All Communication

Figure 7: Mean transfer delay on all four test server configurations
for varying numbers of client processes per client machine

1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

2000

2500

Number of Client Processes per Client

K
B

s
T

ra
ns

fe
re

d/
S

ec
on

d

KBs per Second Transfer versus number of CPs per Client Machine (fixed at 4)

No Caching
Caching − No Communication
One−to−One Communication
All−to−All Communication

Figure 8: KB per second transfer rate on all four test server config-
urations for varying numbers of client processes per client machine

7 Future Work

We constrained ourselves to the case of a read-only workload on
the file store, which greatly relaxes requirements for cache consis-
tency. This makes a hint-based system much more feasible. We
believe our system is extensible to a read/write workload. Using
an optimistic write policy similar to [Page et al. 1997] would be an
important factor in allowing writes to Cash without requiring our
low-overhead location hints to become high-overhead facts.

Our design does not explicitly help in the case where a small set
of items produce almost all of the load on the server. An algorithm
that explicitly considers the heat on a block as a factor in its eviction
is an important extension.

We did not include any support for global age hints. This would
be useful to target idle servers as a destination for evicted blocks.
This would also improve our behavior on receipt of a forwarded
block. Instead of treating a forwarded block as recently referenced,
the target node can attempt to place the block approximately in local
LRU order. This would also allow behavior more like that of N-
chance forwarding, where globally old blocks are discarded instead
of allowing them to circulate.

Our software can easily be extended to support a dynamic list
of cooperating servers. We already support timeouts to decrease
the cost of misses on inaccurate hints. This timeout could be ex-
tended to maintain a weighted average round trip time, and to ig-
nore servers that time out until we begin to receive hints from them
again.

Analysis into how cache management policies interact with re-
quest distribution is an important and unaddressed topic in the lit-
erature. One could conceive of situations where both LARD and a
cooperative cache might be desirable, yet this interaction is not well
understood.

8 Appendix

Here we present several of the probability distribution models as
used to build our test workloads, using SURGE [Barford and Crov-
ella 1998].

� Lognormal

p
�
x ��� 1

xσ � 2π
e ��� lnx � µ � 2 	 2σ2

(1)

� Pareto
p
�
x �
� αkα x � α � 1 (2)

� Weibull

p
�
x �
� βxβ � 1

αβ e ��� x
α � β (3)

References
ANDERSON, T., CULLER, D., AND PATTERSON, D., 1995. A case for

NOW (networks of workstations).

ARLITT, M. F., AND WILLIAMSON, C. L. 1996. Web server workload
characterization: The search for invariants. In Measurement and Model-
ing of Computer Systems, 126–137.

BARFORD, P., AND CROVELLA, M. 1998. Generating representative web
workloads for network and server performance evaluation. In ACM SIG-
METRICS International Conference on Measurment and Modeling of
Computer Systems, 151–160.

CUENCA-ACUNA, F. M., AND NGUYEN, T. D. 2001. Cooperative caching
middleware for cluster-based servers. Tech. Rep. DCS-TR-436, Depart-
ment of Computer Science, Rutgers University, Mar.

DAHLIN, M., WANG, R., ANDERSON, T. E., AND PATTERSON, D. A.
1994. Cooperative caching: Using remote client memory to improve file
system performance. In Operating Systems Design and Implementation,
267–280.

DAHLIN, M. D. 1996. Serverless network file systems. Tech. Rep. CSD-
96-900.

FEELEY, M. J., MORGAN, W. E., PIGHIN, F. H., KARLIN, A. R., LEVY,
H. M., AND THEKKATH, C. A. 1995. Implementing global memory
management in a workstation cluster. In Symposium on Operating Sys-
tems Principles, 201–212.

FEELEY, M., 1996. Global memory management for workstation networks,
phd thesis, university of washington, 1996.

KIM, J., CHIO, J., KIM, J., NOH, S., MIN, S., CHO, Y., AND KIM,
C., 2000. A low-overhead high-performance unified buffer management
scheme that exploits sequential and looping references.

LEFF, A., WOLF, J. L., AND YU, P. S. 1996. Efficient lru-based buffering
in a lan remote caching architecture. IEEE Transactions on Parallel and
Distributed Systems 7, 2 (February), 191–206.

LI, K., AND HUDAK, P. 1986. Memory coherence in shared virtual mem-
ory systems. In Proceedings of the Fifth Annual ACM Symposium on
Principles of Distributed Computing, 229–239.

MAZIÈRES, D., DABEK, F., AND PETERSON, E., 2000. Using TCP
through sockets.

MOSBERGER, D., AND JIN, T. 1998. httperf: A tool for measuring web
server performance. In First Workshop on Internet Server Performance,
ACM, 59—67.

PAGE, T., GUY, J., HEIDEMANN, J., RATNER, D., REIHER, P., GOEL, A.,
KUENNING, G., AND POPEK, G., 1997. Perspectives on optimistically
replicated peer-to-peer filing.

PAI, V. S., ARON, M., BANGA, G., SVENDSEN, M., DRUSCHEL, P.,
ZWAENEPOEL, W., AND NAHUM, E. M. 1998. Locality-aware request
distribution in cluster-based network servers. In Architectural Support
for Programming Languages and Operating Systems, 205–216.

PAI, V. S., DRUSCHEL, P., AND ZWAENEPOEL, W. 1999. Flash: An
efficient and portable Web server. In Proceedings of the USENIX 1999
Annual Technical Conference.

SALTZER, J. H., REED, D. P., AND CLARK, D. D. 1984. End-to-end
arguments in system design. ACM Transactions on Computer Systems 2,
4 (Nov.), 277–288.

SARKAR, P., AND HARTMAN, J. 1996. Efficient cooperative caching using
hints. In Proceeding of the 2nd ACM Symposium on Operating Systems
Design and Implementation (OSDI).

SARKAR, P., AND HARTMAN, J. H. 2000. Hint-based cooperative caching.
ACM Transactions on Computer Systems 18, 4, 387–419.

VALLOPPILLIL, V., AND ROSS, K. W., 1998. Cache array routing protocol
v1.0. Internet draft. Microsoft Corporation.

WESSELS, D., AND CLAFFY, K., 1997. Internet cache protocol (ICP),
version 2. RFC 2186.

