

FEATURE ARTICLE

PUMA-V: Optimizing

Parallel Code

Performance Through

Interactive Visualization

Performance optimization for parallel, loop-oriented

programs compromises between parallelism and

locality. We present a visualization interface which

allows programmers to assist the compiler in

generating optimal code. It greatly improves the

user’s understanding of the transformations that took

place and aids in making additional transformations in

a visually intuitive way.

Visual analytics enables users to participate in machine-

based optimization processes, contributing elements of

human creativity, ingenuity, and expertise as well as commonsense knowledge. The benefits of

visual analytics have been demonstrated in many domains, such as science, business, and medi-

cine. In this work, we take advantage of visual analytics to allow users to reason about parallel

code generation. The visual tool we developed, PUMA-V, is especially useful for compiler de-

velopers who are looking to expose and patch weaknesses in the compiler’s optimization pipe-

line, as well as general users who want to optimize their code but do not know how to best focus

their efforts.

Because of its deep level of analysis and powerful abstractions, we focus particularly on compil-

ers based on the polyhedral model1-4 in our work. The cost models of these compilers can be

augmented through compiler options. However, expert knowledge of the compiler tactics is typi-

cally required to achieve deeper levels of optimization. The average user has little recourse to

improve the resulting performance, since the options available to affect the transformation deci-

sions are generally non-intuitive and require extensive background in the polyhedral model to

understand their affects. Furthermore, the complexity of the generated code makes it nearly im-

possible for a user to understand the optimization decisions or the reasoning behind them.

Eric Papenhausen

Computer Science

Department, Stony Brook

University, Stony Brook, NY

M. Harper Langston

Benoit Meister

Richard Lethin

Reservoir Labs, Inc. New

York, NY

Klaus Mueller

Computer Science

Department, Stony Brook

University, Stony Brook, NY

 COMPUTER GRAPHICS AND APPLICATIONS

PUMA-V stands for Polyhedral User Mapping Assistant and Visualizer. It allows users to affect,

at a fine level of detail, many of the optimization decisions made by R-Stream, a polyhedral

based source-to-source compiler. 1 The main contribution of PUMA-V, compared to previous

work on polyhedral visualizations, is its tight integration with a fully-automatic compiler via

linking to the compiler’s library, calling functions such as scheduling, dependence analysis, etc.

The automatic compiler uses linear programming to produce a program schedule, optimizing a

cost function that favors locality, parallelism, and other factors. PUMA-V empowers the user,

possibly after an automatic optimization, to improve the schedule further. The views of PUMA-

V are augmented with static and runtime performance analyses to help guide the user in making

manual transformation decisions to the most problematic parts instead of just applying boiler-

plate transformations. A simple drag-and-drop interface makes it easy and intuitive to use.

User studies we conducted show that the semi-automatic approach available through this tool

enables better performance as well as a greatly improved understanding of the transformations

made by the compiler. Although we apply this tool to a compiler based on the polyhedral model,

many of the visualizations and interactions we use can be applied to compiler optimizations in

general. With the widespread adoption of polyhedral techniques into popular compilers like

GCC and LLVM, our tool will become even more useful in the future.

THE POLYHEDRAL MODEL

Much work has been done on the polyhedral model for loop parallelization.1 These techniques

involve representing a loop nest as a system of linear constraints. This is an abstraction where

the lower and upper bounds of a simple for loop become linear constraints that define the bound-

ary of a polyhedron, or iteration domain for a statement. In programs with nested loops, each

loop represents an axis in the multi-dimensional iteration domain. Each point in the iteration

domain represents an instance where the statement will be executed and is assigned a logical

execution date based on the surrounding loop iterators. Changing the shape of this polyhedron

translates to a transformation of the code because it changes the execution dates of the statement

instances. New execution dates can be computed for statement instances via a scheduling rela-

tion. This is a multi-dimensional vector that can represent a number of common program trans-

formations (e.g. loop interchange, fusion / fission, skewing, etc.).

Along with the iteration domain, dependences between statement instances are computed. A

dependence occurs when two statement instances access the same memory location and at least

one of these accesses is a write. Dependences help define the semantics of the program (i.e.,

preserving dependences will preserve program semantics). The iteration domain and dependenc-

es together form a linear programming problem; where the objective is to minimize the runtime

by transforming the iteration domain in a way that exposes parallel loops. C code is then gener-

ated from this abstraction and compiled by a low level compiler (e.g. GCC). Algorithms that

perform code transformation in this way are called polyhedral scheduling algorithms. Modern

polyhedral compilers expose loop parallelism in a way that also allows the loops to be tiled (i.e.

an important optimization for cache locality).

Polyhedral compilers expose loop-level parallelism, optimize for cache locality, expose SIMD

parallelism, etc. In practice they make reasonably good optimization decisions that result in bet-

ter performance. Because the polyhedral model is based on heuristics and cost models, some

optimization decisions are sub-optimal. Hence, while performance improvement is generally

obtained, there is no guarantee on the optimality of the performance of the optimized programs.

THE PUMA-V INTERFACE

The interface we present here builds on our previous system published in 20 (see sidebar for a

description). The main view (Figure 1), chord view (Figure 7), and global view (Figure 9(b))

together give a detailed account of the optimizations made by R-Stream and various performance

characteristics of the transformed code. These views are all linked and transformations made in

one view will trigger an update in the others to show the state of the transformed code. Current

tools allow users to make polyhedral transformations; but do not incorporate automatic polyhe-

 FEATURE ARTICLE

dral scheduling techniques. To the best of our knowledge, PUMA-V is the first tool that visual-

izes exposes the internal mechanics of an advanced polyhedral based compiler.

Tactic View

The R-Stream compiler applies a sequence of polyhedral and classical optimizations called tactics. By de-

fault, it only applies a small subset of tactics designed to give good performance in the general case. R-

Stream has a large repository of tactics (close to 100). Some of the more popular ones are dep() which per-

forms dependence analyses, morph() which builds cost functions based on the processor’s characteristics

(cache size, number of cores, etc.) and as() which performs affine scheduling. Others are typically not used

by the average user such as alternative polyhedral scheduling algorithms, different tiling tactics, stencil

specific optimizations, etc.2-4 Many of these tactics outperform the default set of tactics for certain programs;

and so we strived for a visual interface that can provide users with an easier way of experimenting with dif-

ferent transformations.

Tactics are applied in a sequential manner. A familiar paradigm to visualize sequential processes

is the subway visualization.5 Figure 1(a) shows the tactic view using our subway visualization

view, where each tactic is represented by a station. Tactics are applied from left to right. Each

station takes the state of the code given to it from its left neighbor and applies a new tactic. A

user can visit a station by clicking on the node. This will update the other views to reflect the

state of the code after the clicked tactic is applied. In Figure 2, the larger yellow station signifies

that the user has clicked on the “affine scheduling” (as) node.

The code view in Figure 1(c) is updated to reflect the state of the code after the current tactic is

applied. This view contains a pseudo-code representation of the transformed code. The suffix of

a nested loop body statement displays its unique identifier. For example, the “7” in “matmult 7”

indicates that this is statement 7. This view also distinguishes between a read and write to arrays

within a statement. The “>” sign indicates a write while a “<” indicates a read. For example,

statement 7 in Figure 1(c) reads and writes to a C[i,j] and only reads from a A[i,k] and a B[k,j].

Figure 1 The PUMA-V tool showing the state of the code – a consecutive matrix multiplication
task – after the “affine scheduling” (as) optimization (or tactic) has been applied. (a) The tactic
view is a subway visualization, where each tactic is represented by a station, applied sequentially
left to right. (b) The dependence graph view shows a node-link diagram where nodes represent
statements and edges represent dependences. (c) The code view lists the nested-loop program
code that is being optimized. (d) The beta tree view shows the lexicographic ordering of loops
and statements. Each branch is a nested loop where the numbers refer to the numbers
appended to the code statements in the code view.

 COMPUTER GRAPHICS AND APPLICATIONS

Changes from the previous tactic are highlighted in green. The doall and reduction loops high-

lighted in Figure 1(c) indicate that the application of the “affine scheduling” (as) tactic has re-

sulted in parallel loops. This indicates that the “as” tactic was responsible for exposing

parallelism. This feature increases the transparency of the optimizations. Instead of just viewing

the transformed code, the user can see exactly how each tactic changes the code.

The user can also add new tactics at any station in the view. By right clicking a station and se-

lecting “Add Tactic”, a popup will show the list of available tactics. Adding a new tactic causes

the visualization to branch off a new subway line. This line is assigned an unused color and rep-

resents an alternative sequence of optimizations (see Figure 2). Different subway lines share the

sequence of tactics up to the point where they diverge. In Figure 2, both the orange and light blue

lines apply the ”morph” and ”dep” tactics before diverging into separate optimization sequences.

Adding a tactic at the end of a subway line extends the line. There is no limit to the number of

tactics that can be assigned to a subway line. This allows the user to experiment with different

optimizations while keeping older sequences in a color coded format.

Beta Tree View

The beta tree view of Figure 1(d) shows the lexicographic ordering of loops and statements. It is

a visualization of the β component of the scheduling relation of Figure 1(c). Since R-Stream

stores this loop position information in a tree data structure, using a tree visualization was a natu-

ral choice. Inner nodes correspond to loops and leaf nodes correspond to statements. Each node

is labeled by the IDs of the statements that it contains. The node labeled {2,7}, for example, con-

tains nested loop body statement 2 and statement 7 (matmult_2 and matmult_7, see previous

section).. Except for the root, each level in the tree corresponds to a loop level. Level 0 of the

tree corresponds to the outer most loops. Level 1 corresponds to the next outer most loops, etc.

Nodes below level 0 of the tree correspond to nested loops. The tree visualization also conveys a

concise overview of the structure of the code. By looking at Figure 3, for example, we can see

that statement 10 is nested under two loops and that statement 2, 5, and 7 share an outer loop.

Additionally, clicking on a node in the beta tree highlights the related section of code in the code

Figure 2: The subway visualization used in the tactic view. Different colored lines represent
different optimization paths that can be taken by the compiler. The orange and light blue
lines diverge from the dark blue line after the “dep” station.

Figure 3: Result of clicking on the node labeled (2,5,7). The corresponding text in the
code view is highlighted. The code here is from the Polybench benchmark suite

12
.

 FEATURE ARTICLE

view. This includes any nested loops and statements; as seen in Figure 3.

The two most important performance metrics in parallel computing are parallelism and locality

which often present tradeoffs. In order to communicate both of these metrics to the user simulta-

neously we split the inner nodes (which represent loops) into two halves and colored each half

with respect to one of the two metrics. The leaf nodes on the other hand are colored blue to indi-

cate that they represent statements. The left half of an inner node is colored based on parallelism,

while the right half is colored based on the array access stride of the loop. For parallelism, green

corresponds to doall loops. Yellow represents reduction loops and red represents a sequential

loop. Doall loops contain the maximum amount of parallelism. Loops that have doall parallelism

carry no dependences; and so each iteration of the loop can be executed simultaneously. Loops

that are marked as reduction carry a dependence that results from an operation that is associative

(e.g. addition, subtraction, etc.) and can be executed via a parallel reduction. Loops marked se-

quential have no parallelism and become simple for loops in the transformed code.

The right half of the nodes are colored from red to yellow to green based on a linear scaling

of the stride. Red indicates a large array access stride, while green represents a low stride.

The stride of a loop has important implications for locality. A low stride loop at the inner-

most position indicates good spatial or temporal locality (i.e. data is likely to be in cache

when it is needed). An optimal ordering for loops with respect to stride is to have the red

nodes at the top of the tree, yellow nodes in the center, and green nodes at the bottom. An

example of this split color can be seen in node {2,5} of Figure 3. This node is colored yel-

low and red to indicate it represents a reduction loop with a high memory access stride.

Although node colors are split based on parallelism and locality by default, radio buttons at

the bottom of the tree allow the user to toggle between showing parallelism only or stride

only views.

We also wanted to define a set of visual interactions by which users could perform code

transformations directly in the beta tree. When the mouse hovers over a node in the beta

tree, nodes that it can be interchanged with are highlighted (see Figure 4). By dragging the

node and dropping it to a new position, the user can perform a transformation called loop

interchange (i.e. permuting the order of loops in the loop nest). Loop interchange can be

used to change the execution order of the loop nest to improve locality of reference. Entire

loop nests can also be moved by dragging a node horizontally. This can improve data reuse

by bringing statements that share data closer together. Figure 5(a-c) shows an example of

moving the loop nests.

Users can also perform loop fusion or loop fission through the beta tree (see Figure 5(d-f)). Right

clicking on a node gives the option to perform fusion or fission. Selecting fusion will highlight

the nodes that are legal for loop fusion. Fusing statements that share data increases the likelihood

that data is already in cache when it is needed. Fusing some loops, however, can lower the

amount of parallelism, turning a doall loop into a reduction or sequential loop. Fission is the

opposite of fusion and will split a single loop nest into multiple loop nests. In our tool, fission is

Figure 4: Loop interchange can be performed directly through the beta tree.
Hovering over the node in (a) highlights permutable loops. A drag and drop action
interchanges the loops (b)-(c).

 COMPUTER GRAPHICS AND APPLICATIONS

only allowed on loop nests that contain multiple statements and will cause each statement to

separate into an isolated loop nest.

The transformations available through the beta tree view are especially useful when used in con-

junction with the dependence graph (Figure 1(b)); which uses heuristics to visualize whether a

statement has good cache locality. The dependence graph highlights likely performance bottle-

necks; and the user can perform a simple transformation through the beta tree to remove it.

Dependence Graph View

The R-Stream compiler performs a dependence analysis to identify the legal transformations and

the amount of parallelism available in the program. A part of this process is the construction of a

dependence graph. In this graph, nodes represent statements, and edges represent dependences.

The polyhedral scheduling algorithm used by R-Stream adds additional information to this graph

to indicate the desirability of certain transformations. This effectively turns the dependence

graph into R-Stream’s cost model. A cost model is constructed for each loop level of the pro-

gram based on heuristics and on the dependence representation. Transformations are determined

on a level by level basis. Optimization decisions are made for the outer most loop level first; then

the next loop level, etc. Figure 1(b) shows the cost model as a dependence graph visualization

for the outer most loop level (i.e. level 0). In general, the dependence graph view shows the cost

model for a particular loop level and allows the user to navigate to other loop levels via black

triangles on either side of the view.

The dependence graph view is implemented as a polymetric visualization.6 This view contains

visual clues conveying a variety of performance heuristics relating to cache locality. Figure 1(b-

c) show sample code and its dependence graph. The color of the node indicates the amount of

spatial or temporal locality available within a single statement. Good locality is achieved by

minimizing the number of cache misses. Red indicates that the statement has poor spatial locali-

Figure 5: Some beta-tree operations. Reordering loop nests directly through the beta tree.
Hovering over the node in (a) highlights swappable loop nests. A drag and drop action
changes the loop nests (b)-(c). Right clicking on node 7 brings the option to perform fusion or
fission (d). Selecting “Fuse Loop” highlights only loops where fusion is legal (e). Clicking node
10 causes the loops to fuse (f). Note that we lose the parallelism of the doall loop on 7.

 FEATURE ARTICLE

ty; meaning the requested data is likely to be off cache. This is commonly caused by a high ac-

cess stride of the innermost loop. Green indicates the statement has good spatial locality.

Edges between nodes indicate a dependence. This represents a producer / consumer relationship

between the two statements in dependence. In Figure 1(b), the arrow points from node 7 to node

2; indicating that statement 2 writes to a memory location that statement 7 accesses (i.e. state-

ment 7 depends on statement 2). The length of the edge is determined by the dependence dis-

tance (i.e. the number of loop iterations between the source and destination of the dependence).

The width of the edge indicates the volume of data that is communicated between the two state-

ments. Optimizations can be selected to change the length of the edge. Shortening an edge

through fusion, for example, reduces the amount of time between the execution of two dependent

statements; thus, improving the likelihood that data is in cache. Edge width, however, cannot be

affected. Visualizing this metric can help users identify statements that communicate a lot of data

and pick transformations that shorten the edge in the dependence graph view.

Dependences can also occur within a statement. This arises when a statement writes to a memory

location at one loop iteration; and then reads from the same memory location at a later loop itera-

tion. The size of the nodes in the dependence graph view indicates the intra-statement depend-

ence distance. Larger nodes indicate a greater number of iterations between consecutive

accesses; suggesting that the data communicated has likely been evicted from the cache. An

example of this can be seen with statement 7 in Figure 1. We chose to use node size to represent

intra-statement dependences because the view became cluttered and difficult to read when visu-

alizing large self-loops.

We visualize performance heuristics relating to locality because memory bandwidth can often be

a major performance bottleneck. It is also relatively easy to compute simple, effective heuristics

to show the likelihood of a cache miss. Additionally, we already visualize the amount of parallel-

ism through the beta tree view. Another performance heuristic we considered is the likelihood

that a loop will be vectorized by a low level compiler (e.g. GCC). This, however, may not be as

effective; since auto-vectorization greatly depends on the algorithms used by the low level com-

piler.

Size and color of the nodes as well as the length of the edges can all be affected by optimizations

that change how data is accessed. In addition to the tactic view and the beta tree view, optimiza-

Figure 6: Performing transformations in the beta view causes the dependence graph
view to update. Statements 7 and 11 in (a) exhibit poor locality. By performing loop
interchange on statement 7 (b)-(d) the locality is improved (c).

 COMPUTER GRAPHICS AND APPLICATIONS

tion decisions can also be affected by changing the dependence graph view. Values associated

with the edges and nodes govern the desirability of certain transformations. A fusion score is

associated with the dependence edges. This indicates the desirability of fusion among loop nests

that contain the statements in dependence. Setting a high fusion score on an edge will increase

the likelihood that the statements will be fused; thus, shortening the edge. Conversely, setting a

high negative fusion score will encourage fission between the two statements; causing the edge

to lengthen. Similarly, the nodes contain a value for the execution cost and SIMD weight. The

execution cost represents the amount of computation associated with the statement. A high exe-

cution cost will cause R-Stream to view parallelizing the loops surrounding the statement as a

high priority. This can improve parallelism at the cost of locality. A high SIMD weight encour-

ages optimizations that allow the low level compiler (e.g. GCC) to vectorize the code. This is a

type of inner loop parallelism that R-Stream enables through the use of pragma directives.

PUMA-V exposes the fusion score, execution cost, and SIMD weight to the user for

modification.

The dependence graph view acts as a proxy for good performance. The user’s goal is to find

transformations that make the nodes small and green and the fat edges as short as possible.

Changing the transformations can be done by selecting different R-Stream tactics in the tactic

view, modifying the fusion or execution costs associated with the dependence graph, or by ex-

plicitly modifying the loop ordering in the beta tree view. Changes made in any of these views

will cause the dependence graph to update to reflect the performance characteristics of the trans-

formed code. Figure 6 shows an example of how the dependence graph view highlights perfor-

mance bottlenecks that can be fixed via the beta tree view.

Chord View

The chord view is a new type of visualization which shows the access pattern of the program via

a chord diagram. A chord diagram is a visualization used to show relationships between entities.

Arcs are drawn between nodes arranged on a circle to show that the nodes have something in

common. For our purposes, the nodes represent array elements and the arcs represent memory

accesses. The goal of this view is to help non-expert users better understand concepts like spatial

and temporal locality and their impact on performance.

Figure 7: The chord view shows poor locality along accesses to the A array (a) and how permuting the inner loops of
statement 2 leads to a better access pattern (b). The colored arcs show the elements accessed at timestep 1 while
the gray, shadow arcs show the accesses of the previous timestep. Note that the leaf node labeled f2g and the node
directly above it in the beta tree are opaque to indicate that the current timestep refers to the first iteration of the
innermost loop of statement 2.

 FEATURE ARTICLE

This view maps arrays to a circle as seen is Figure 7. The nodes are colored based on the array in

which it belongs. Arcs are colored based on the array being read from at the current timestep.

The node highlighted in yellow represents the array element that is written to in the current

timestep (i.e. the write element). For each timestep, arcs are drawn from the write element to the

array elements that are read. This shows, in a single view, the memory footprint of a single itera-

tion of one statement.

A slider at the bottom allows the user to select the timestep shown in the chord diagram. Shadow

arcs are drawn for the previous timesteps to help clarify the access pattern. Large gaps between

the color and shadow arcs indicate poor locality of reference. In Figure 7(a), for example, the

program suffers from a bad access pattern as seen by the large gap between the color and shadow

arcs along array A. Regions of the slider bar are colored from green (i.e. good locality) to red (i.e.

bad locality) based the access pattern of the timesteps they represent. Specifically, the color is

selected from a linear scale based on the stride of the innermost loop. This helps users quickly

identify the regions that need inspection.

The beta tree view is replicated and shown next to the chord view. In addition to allowing the

user to perform transformations like fusion / fission and interchange, this beta tree is augmented

to provide additional context to the chord view. Nodes that do not relate to the current timestep

are made transparent while opaque nodes indicate which iteration of a statement is being execut-

ed at the current timestep. The integer to the right of the inner nodes of the beta tree show the

current iteration of the loop it represents. Together, this implies a mapping from timestep to

statement and loop iteration.

Because loops can be parametric, we cannot perform this type of static analysis for each itera-

tion. Even for loops with a constant trip count, displaying a chord diagram for each iteration is

impractical, since there may be thousands of iterations. The size of arrays can also be too large to

display each element as a node in the chord diagram. To address this scalability issue, chord

diagrams are only produced for the first four iterations of each loop. The idea is that only a few

iterations of each loop is needed to give the user a good idea of the access pattern. This limits the

number of timesteps for which we need to produce visualizations. Similarly, only the first four

elements of each dimension are displayed for each array. This is followed by a special ellipsis

array element to account for accesses that do not fall within the first four elements of a dimen-

sion. The ellipsis element acts as a representative for the rest of the array and accesses not within

the first four elements have arcs drawn to this node.

Although locality of reference is represented elsewhere in PUMA-V, the chord view displays a

finer level of detail than the other views can provide. Whereas the beta tree and dependence

graph can highlight which statements have bad locality, the chord view shows which array ac-

cesses specifically are the problem. The benefits of fusion are also more clearly shown in this

view, as users can see exactly which array elements are shared between statements. Conversely,

it is also obvious when R-Stream fuses two statements that should not be fused. This is observed

as a type of ping-ponging effect where different arrays are accessed at each timestep. With the

chord view a user can rapidly identify a bad access pattern at a range of timesteps, determine

which statement the timesteps refer to, and perform a transformation in the beta tree to achieve

better locality.

Tile Size View

Tiling is an important transformation that groups iterations of statements together so that they

can benefit from data reuse. The goal is to maximize the likelihood that the data has already been

read into cache when it is needed again. This is especially useful for statements that have an

undesirable access pattern that cannot be addressed through loop interchange. Tiling is a combi-

nation of a strip-mine and an interchange. A loop is first strip-mined by a number of iterations

(i.e. the tile size), and then the strip-mined loop is sunk to the innermost position.

The tile sizes determine how many iterations are grouped together and have important impacts

on performance. If the tiles are too large then performance will suffer from cache capacity miss-

es. If the tiles are too small, then the cache may not be fully utilized. Tiling is performed by a

tiling tactic in R-Stream where the tile sizes are selected based on a heuristic. In PUMA-V, tile

 COMPUTER GRAPHICS AND APPLICATIONS

size selection is exposed to the user through a simple slider interface with a novel tree-based

visualization to help guide him.

Figure 8 shows the tile size visualization. It is built from the beta tree prior to tiling. The large

nodes represent loops that will be tiled. Clicking on any of these nodes switches the focus to the

clicked node. A slider can then be used to set the tile size of the highlighted node. The nodes

corresponding to tiled loops contain a visualization using three concentric arcs. These represent

the saturation of the three levels of cache. The inner green arc represents L1 cache. The orange

arc represents L2 cache and the outer blue arc represents L3 cache. Moving the slider changes

each of the arcs. The appropriate level of cache is fully saturated when the arc completes to form

a circle. This allows the user to make informed decisions about the size and shape of a tile.

The arc sizes within a node are computed based on the data footprint of the arrays accessed by

the statements nested within the loop it represents. Specifically, for each statement, we take the

image of the iteration domain under the access function of each array. Parametric upper bounds

are added for each loop iterator. This produces a parametric footprint domain for each array.

When the tile sizes are set, the parametric upper bounds are replaced with constants based on the

tile sizes. The saturation is then computed by summing the area of each footprint domain. Since

R-Stream performs rectangular tiling, the area is computed as the product of the length of each of

the tile dimensions.

The arcs of a node at height d in the tree are drawn with respect to the first d dimensions of the

tile. For example, the innermost node has a height of one in the tree and its arcs are drawn with

respect to the first tile dimension. A node directly above it has a height of two and its arcs are

drawn with respect to the first two tile dimensions. By changing the tile size of one node, all of

its ancestors’ arcs are updated as well. This lets the user see how each tile dimension adds data to

the cache and set saturation limits based on the tile dimension.

Scalability

One potential weakness with the visualizations in this tool is scalability. As the number of state-

ments increase, some of the views can become cluttered. The beta tree and dependence graph

views are particularly vulnerable to visual clutter. A large number of statements can cause the

beta tree to become too wide, thus preventing the entire tree from being displayed at once. The

dependence graph view can become a tangled mess of nodes and edges where some dependences

are occluded.

To address the issue of scalability, we include an additional “global view”, shown in Figure 9(a).

This view contains a single visualization of the beta tree. This view gives users a way to focus on

Figure 8: The tile beta tree view shows which loops will be tiled. The concentric arcs
show the saturation of the three levels of cache based on the current tile size. The
green, orange, and blue arcs refer to the L1, L2, and L3 caches respectively. The node
outlined in yellow indicates that changes to the tile slider will affect the degree to which
the corresponding loop will be strip-mined.

 FEATURE ARTICLE

a particular part of the program containing the performance bottleneck. By clicking on a node in

the tree, the other views in PUMA-V will be filtered to only show the statements contained in the

subtree rooted at the clicked node. This simple mechanism allows users to focus only on problem

areas of the code by removing the visual clutter induced by insignificant statements.

Runtime Evaluation

The PUMA-V tool provides a means for gathering runtime performance data of the transformed

code. In the upper left corner of Figure 1 is the “Runtime Evaluation” button. When clicked, C

code is generated and the outermost loop in each loop nest is parallelized using OpenMP. The

code is then compiled and executed. Performance data is gathered with the help of HPCToolkit

and PAPI performance counters. The execution time is then reported and the beta tree visualiza-

tion is updated to reflect the performance.

Figure 9(b) shows the beta tree after runtime performance data is gathered. The width of the

edges is updated to reflect the distribution of execution time. Thicker edges indicate that more

time is spent processing the statements in that branch of the tree. Edges are also colored to show

auxiliary performance metrics. The user can toggle between setting edge color to represent the

L2 cache miss rate or cycles per instruction (CPI). This gives a representation of the memory

bandwidth and instruction bandwidth respectively. Green edges indicate a low L2 cache miss

rate (low CPI) and red indicates a high L2 cache miss rate (high CPI). HPCToolkit does not al-

ways gather performance metrics for every branch of the tree. Black edges indicate that

HPCToolkit has gathered the timing data but has not gathered data relating to the L2 cache miss

rate or the CPI. Thin gray edges indicate that HPCToolkit has not gathered any data for that

branch in the beta tree. The runtime evaluation allows users to take an iterative approach to op-

timizing code. Embedding the runtime performance visualization into the beta tree helps users

see the problem areas of the code and perform appropriate transformations to alleviate the bot-

tleneck.

Visualizing the runtime performance through the beta tree view has a few advantages. First, it

helps conserve screen real estate. It is important for the user to be able to see all the views on one

screen. We would not be able to add a new view for performance visualization without pushing

some other view off the screen. Second, embedding the runtime information in the beta tree al-

Figure 9: Beta-tree operations for scalability. (a) Clicking on the node in the global view will make
all nodes transparent that do not contain statements 21, 23, and 24. The other views will be
updated to show only these statements. (b) Updated beta tree view augmented with runtime
performance data. The width of the first left edge is thicker than the right; indicating more time is
being spent processing the left branch. Red branches indicate a high L2 cache miss rate.

 COMPUTER GRAPHICS AND APPLICATIONS

lows the user to see which loop nests contain bottlenecks. This is particularly useful for the L2

cache miss rate; which is often improved through a simple loop interchange. A user is able to

identify a bottleneck, and resolve it through a single view.

USER STUDY

We conducted a user study to evaluate the effectiveness of the PUMA-V tool. In this study, users

were given full access to all features of the tool; including a number of polyhedral scheduling

algorithms as well as classical compiler optimizations. The goal was to use the visualizations

presented in this paper to apply manual transformations on several codes to optimize perfor-

mance. The runtime of the user manipulated code was compared to that of the “baseline R-

Stream” transformation for R-Stream version 3.15. Baseline R-Stream applies a set of default

tactics without any options or additional optimizations. It is the transformation applied if R-

Stream is run without any arguments.

In this experiment, we recruited six participants to perform semi-automatic optimization using

the PUMA-V tool. All users had experience programming with the C programming language.

Three of the users had a deep understanding of the polyhedral model and were considered ex-

perts. The rest of the users had no polyhedral background and were considered non-experts. The

task was to optimize five separate programs of varying difficulty taken from the PolyBench

benchmark suite v1.0 7 which has code for matrix multiplications, stencil operations (derivatives,

finite differences, etc.), BLAS (basic linear algebra subprograms), and others..

Performance was evaluated on a 4 core machine with Intel Core i5-2520M CPU @ 2.50GHz and

32KB of L1 cache, 256KB L2 cache, and 3MB L3 cache. Our hypothesis was that users would

be able to find a better transformation compared to the baseline R-Stream by using the PUMA-V

tool. Participants would start with a visualization of the baseline transformations made by the R-

Stream compiler. They were allowed to use all features of the PUMA-V tool. There was a time

limit of 20 minutes on each problem but users were allowed to withdraw at any time. A trial

would end when the user withdrew, exceeded the time limit, or felt that no other useful optimiza-

tions could be made. The goal was to outperform the optimizations made by the baseline R-

Stream. Each session lasted roughly two hours.

For each experiment we measured the execution time of the transformed code and the comple-

tion time. We also measured the amount of time that had passed until a transformation was found

that outperformed the baseline R-Stream transformed code. This acted as a measure of the

amount of effort required to outperform baseline R-Stream. At the end of the study, each user

was asked to fill out a survey about their experience using the tool.

Figure 10: User study results. (a) Average time to the first transformation better than baseline R-
Stream and the total completion time. Users spent an average of 7 minutes interacting with the
tool before identifying a better transformation. Error bars show one standard deviation. (b)
Average speed-up obtained for experts and non-experts. Experts achieved an average speed-up
of 2.98 whereas non-experts obtained a speedup of 2.93. Error bars show the min and max
speed-ups. (c) Average time to the first transformation better than baseline R-Stream for experts
and non-experts. Non-expert users were able to identify better transformations twice as quickly,
on average, compared to expert users. Error bars show standard deviation.

 FEATURE ARTICLE

We observed an average speed-up of 2.9, with respect to execution time, across all experiments.

In general, baseline R-Stream did a good job at exposing parallelism; but would often make the

wrong transformation with respect to locality. In many examples R-Stream would fuse state-

ments where fission and loop interchange yielded better performance.

Figure 10(a) shows the average completion time and the time to the first transformation that

outperformed the baseline R-Stream. Users spent an average of 14 minutes on each problem. On

average, the first transformation that performed better than baseline R-Stream was found after 7

minutes and users continued interacting with the tool for another 7 minutes. This was especially

true in examples with multiple statements that shared a significant amount of data. Users would

find initial success by performing loop permutation and spent the remaining time exploring the

tradeoffs between fusion / fission and loop permutation.

Figure 10(b) compares the speed-ups obtained by expert versus non-expert users. Experts outper-

formed non-experts in nearly every example; but only marginally. Expert users had an average

speed-up of 2.98 versus 2.93 for non-experts. Figure 10(c) shows the amount of time before

users arrived at a transformation that outperformed baseline R-Stream. On average, experts took

twice as long before achieving a speed-up.

We observed that all of the expert users spent a significant amount of time reading the code.

These participants were more accustomed to reading the code generated by a polyhedral compil-

er. They knew what performance characteristics to look for in the generated code and wanted to

gain a better understanding of the computation being performed. They were also more deliberate

when performing transformations. Experts would look at the code view to understand how trans-

formations like fusion or interchange affected the generated code and to verify that the changes

were taking place as they intended.

Conversely, users who were not familiar with the polyhedral model relied mostly on the visuali-

zations. These users would avoid reading the code and took a more exploratory strategy. They

quickly became more comfortable with the visualizations and were able to identify the transfor-

mations needed to remove the bottlenecks conveyed by the visualizations. This generally led to

performance improvements in less time compared to expert users who relied heavily on the code

view. Although inspecting the code view was time consuming, it did provide some useful in-

sights.

If several loops have a similar access stride, the difference in color might be too subtle to differ-

entiate in the beta tree view. This would be the case if, for example, one loop yielded spatial

locality (i.e. a stride of one) whereas another loop yielded temporal locality (i.e. a stride of zero).

Inspecting the code view would be required to determine the optimal loop ordering. This could

be shown in the beta tree by ranking the loops based on stride, and coloring the nodes based on

this ranking. This remains an item for future work.

Five of the six users agreed that the PUMA-V tool improved their understanding of the trans-

formations made by R-Stream. The most popular views were the beta tree and chord view. A

majority of the transformations were performed through beta tree interactions (i.e. fusion / fis-

sion and permutation). This was largely due to the simplicity of the interactions and how they

relate to changes in the code (e.g. interchanging nodes in the tree corresponds to interchanging

loops in the code). Users also noted that the chord diagram was particularly useful in determin-

ing whether to fuse statements. Expert users utilized the tile size visualization to varying degrees.

One expert, in particular, noted that the arc visualizations were especially useful in guiding tile

size selection. All users agreed that the polyhedral view was the least useful because it lacked a

mechanism for guiding transformations.

CONCLUSION

The study presented in this paper suggests that combining automatic methods with user intuition

can lead to significantly better performance compared to automatic methods alone. We found

that users were able to further exploit opportunities for optimization that R-Stream exposed with

its initial transformations. In addition, our study also revealed some limitations in R-Stream’s

baseline transformations. Although R-Stream found optimal skewing / shifting and exposed

 COMPUTER GRAPHICS AND APPLICATIONS

maximal parallelism, the baseline transformations occasionally focused too heavily on fusion at

the expense of access stride. This suggested that the cost model used by baseline R-Stream was

not evaluating some of these tradeoffs properly. This may be resolved by using different optimi-

zations or auto-tuning, but PUMA-V allows the user to fine tune the performance in a visually

intuitive way. With these observations in mind, our expert users agreed that PUMA-V has high

potential to be a useful tool for compiler developers. It can be used to identify frequently missed

optimizations that developers should address and enrich the compiler with new optimization

strategies.

The chord view is currently limited to only showing the first four iterations of each loop. This is

to avoid visual clutter associated with large or parametric loops. The dependence and access

patterns, however, may change throughout the execution of a program. To remedy this, we in-

tend to allow the user to choose which iterations to visualize. This can also be augmented with a

mechanism to highlight iterations of a loop that have an “interesting” dependence or access pat-

tern (i.e. the pattern is different from most of the iterations). This remains an item for future

work.

Finally, in addition to optimizing performance, PUMA-V can also serve as an important educa-

tional tool for teaching the polyhedral model. Some experts in our study had suggested this. Stu-

dents can get a sense of how to perform some basic optimizations, why they are important, and

how they impact the generated code.

ACKNOWLEDGMENTS
This research was partially supported by NSF grant IIS 1527200 and DOE STTR Phase I/II

grants DE-FOA-0000760/DEFOA-000101. Further support came from the MSIP (Ministry

of Science, ICT and Future Planning), Korea, under the ICT Consilience Creative Program

supervised by the IITP (Institute for Information and Communication).

SIDEBAR

Software Visualization

Visualization has long been used to make sense of program structure. Ball and Eick convey in-

formation about large programs through the use of pixel or line representations, where each line

in the view represents a line of code.8 Color is used to show code change history, compare pro-

grams, convey software complexity, and show execution hotspots where the programmer should

focus his optimization efforts.

De Pauw et al. present a visual tool for exploring a JAVA program’s runtime behavior.9 A histo-

gram shows CPU and memory resource consumption, which can also be used for hotspot detec-

tion. A graph view is available to convey references between objects which was found to be

particularly useful for identifying memory leaks. An execution view that consists of color-coded

stripes to show the execution time of different functions can help users identify bottlenecks.

JaVis is another JAVA based software visualization tool.10 It uses program traces to visualize

and debug concurrent programs, with an emphasis on detecting deadlocks. UML diagrams are

employed to visualize the traces.

Performance Visualization

Performance visualization is important for identifying bottlenecks and the best way to resolve

them. VAMPIR is a performance visualization tool for analyzing MPI program traces. 11 It is

capable of gathering and visualizing performance statistics and includes a zoomable timeline

visualization for viewing problems at any level of detail. Jumpshot is another tool for visualizing

MPI performance. 12 It is capable of detecting anomalous durations; thus bringing users’ atten-

 FEATURE ARTICLE

tion to problem areas of the program. A timeline view is used to show the state of the different

MPI nodes over time. Histograms were also used to convey performance metrics.

The memory trace visualizer is presented by Choudhury et al.13 This tool enables analysis of

memory access patterns throughout program execution. Visual representations are presented for

different cache levels. Color is used to indicate read/write operations as well as cache hits and

misses. The tool also includes animation to convey cache accesses over time. Cache behavior is

represented via colored glyphs placed on three concentric rings representing main memory, L2,

and L1 cache.14 Animation is used to show how data is read from main memory to L2 and L1

cache levels and eventually evicted from cache.

Polyhedral Model Visualization

Techniques for visualizing the polyhedral model typically involve visualizing the iteration do-

main The 3D iteration space visualizer visualizes the iteration domain and dependences of a loop

nest.15 Dependences are visualized as vectors, and provide a convenient way for users to identify

and mark parallel loops. Tulipse is an Eclipse plugin that also includes a 3D visualization of the

iteration domain and dependence vectors.16 This tool includes an editable code view as well as

run time performance visualizations to help the user identify the bottlenecks in the code. Para-

Graph is another Eclipse plugin for visualizing and tuning parallel programs.17 This tool uses the

CETUS compiler to automatically identify parallel loops.18 CETUS performs some analysis to

identify if a loop can be parallelized. However, it does not transform code to expose parallelism.

The main visualization consists of a control flow graph augmented with dependence information.

The Clint tool is an interface with multiple views for manipulating polyhedral transformations

through visualizations.19 Users can use mouse interactions to change the shape and position of

the iteration domain. An editable code view is then updated to reflect how those changes trans-

late to source code transformations. Our own work is a precursor of the system presented here.20

This early prototype, however, lacks several important features and it also did not provide a user

evaluation to gauge efficacy. For the current work, the beta tree view was augmented to convey

array access stride and parallelism type simultaneously. Second, we created the chord and tile

size visualizations to convey array access pattern and tile size/shape, respectively. Finally, a

“global view” was added to allow the user to focus in on specific parts of the program being

optimized.

REFERENCES
1. B. Meister, N. Vasilache, D. Wohlford, M. Baskaran, A. Leung, and R. Lethin, “R-

stream compiler,” Encyclopedia of Parallel Computing, pp. 1756–1765, 2011.

2. A. W. Lim and M. S. Lam, “Maximizing parallelism and minimizing synchronization

with affine partitions,” Parallel computing, vol. 24, no. 3, pp. 445–475, 1998.

3. C. Ancourt and F. Irigoin, “Scanning polyhedra with do loops,” ACM Sigplan Notices,

vol. 26, no. 7, pp. 39–50, 1991.

4. K. Stock, M. Kong, T. Grosser, L.-N. Pouchet, F. Rostello, J. Ramanujam, and P.

Sadayappan, “A framework for enhancing data reuse via associative reordering,” ACM

SIGPLAN Notices, vol. 49, no. 6, pp. 65–76, 2014.

5. J. Scott, “Automatic layout of metro maps using multicriteria optimisation,” Ph.D.

dissertation, Kent University, 2008.

6. M. Lanza and S. Ducasse, “Polymetric views-a lightweight visual approach to reverse

engineering,” IEEE Transactions on Software Engineering, vol. 29, no. 9, pp. 782–

795, 2003.

7. L.-N. Pouchet. (2012) Polybench: The polyhedral benchmark suite. [Online].

Available: http://web.cse.ohio-state.edu/ pouchet/software/polybench

8. T. Ball and S. G. Eick, “Software visualization in the large,” Computer, vol. 29, no. 4,

pp. 33–43, 1996.

9. W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and J. Yang,

“Visualizing the execution of java programs,” Software Visualization, pp. 647–650,

2002.

 COMPUTER GRAPHICS AND APPLICATIONS

10. K. Mehner, “Javis: A uml-based visualization and debugging environment for

concurrent java programs,” Software Visualization, pp. 163–175, 2002.

11. W. Nagel, A. Arnold, M. Weber, H. Hoppe, and K. Solchenbach, “Vampir:

Visualization and analysis of MPI resources,” 1996.

12. O. Zaki, E. Lusk, W. Gropp, and D. Swider, “Toward scalable performance

visualization with jumpshot,” The International Journal of High Performance

Computing Applications, vol. 13, no. 3, pp. 277–288, 1999.

13. I. Choudhury, K. C. Potter, and S. G. Parker, “Interactive visualization for memory

reference traces.” Computer Graphics Forum, vol. 27, no. 3, pp. 815–822, 2008.

14. I. Choudhury and P. Rosen, “Abstract visualization of runtime memory behavior,”

Visualizing Software for Understanding and Analysis (VISSOFT), 2011 6th IEEE

International Workshop on, 2011.

15. Y. Yu and E. H. D’Hollander, “Loop parallelization using the 3D iteration space

visualizer,” Journal of Visual Languages and Computing, vol. 12, no. 2, pp. 163–181,

2001.

16. Y. W. Wong, T. Dubrownik, W. T. Tang, W. J. Tan, R. Duan, R. S. M. Goh, S. hao

Kuo, S. J. Turner, and W.-F. Wong, “Tulipse: a visualization framework for user-

guided parallelization,” in European Conference on Parallel Processing, pp. 4–15.

17. I. Bluemke and J. Fugas, “A tool for supporting c code parallelization,” Innovations in

Computing Sciences and Software, pp. 259–264, 2010.

18. C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann, and S. Midkiff, “Cetus: A source-

to-source compiler infrastructure for multicores,” Computer, vol. 42, no. 12, 2009.

19. O. Zinenko, C. Bastoul, and S. Huot, “Manipulating visualization, not codes,” in

International Workshop on Polyhedral Compilation Techniques (IMPACT), 2015.

20. E. Papenhausen, K. Mueller, M. H. Langston, B. Meister, and R. Lethin, “An

interactive visual tool for code optimization and parallelization based on the polyhedral

model,” in Parallel Processing Workshops (ICPPW), 2016 45th International

Conference on, 2016, pp. 309–318.

