FEATURE ARTICLE

PUMA-V: Optimizing
Parallel Code
Performance Through
Interactive Visualization

Eric Papenhausen Performance optimization for parallel, loop-oriented
Computer Science
Department, Stony Brook

University, Stony Brook, NY locality. We present a visualization interface which

programs compromises between parallelism and

M. Harper Langston allows programmers to assist the compiler in
Benoit Meister
Richard Lethin
Reservoir Labs, Inc. New user’s understanding of the transformations that took
York, NY

generating optimal code. It greatly improves the

place and aids in making additional transformations in
Klaus Mueller

Computer Science
Department, Stony Brook
University, Stony Brook, NY

a visually intuitive way.

Visual analytics enables users to participate in machine-

based optimization processes, contributing elements of
human creativity, ingenuity, and expertise as well as commonsense knowledge. The benefits of
visual analytics have been demonstrated in many domains, such as science, business, and medi-
cine. In this work, we take advantage of visual analytics to allow users to reason about parallel
code generation. The visual tool we developed, PUMA-V, is especially useful for compiler de-
velopers who are looking to expose and patch weaknesses in the compiler’s optimization pipe-
line, as well as general users who want to optimize their code but do not know how to best focus
their efforts.

Because of its deep level of analysis and powerful abstractions, we focus particularly on compil-
ers based on the polyhedral model** in our work. The cost models of these compilers can be
augmented through compiler options. However, expert knowledge of the compiler tactics is typi-
cally required to achieve deeper levels of optimization. The average user has little recourse to
improve the resulting performance, since the options available to affect the transformation deci-
sions are generally non-intuitive and require extensive background in the polyhedral model to
understand their affects. Furthermore, the complexity of the generated code makes it nearly im-
possible for a user to understand the optimization decisions or the reasoning behind them.

I COVMPUTER GRAPHICS AND APPLICATIONS

PUMA-V stands for Polyhedral User Mapping Assistant and Visualizer. It allows users to affect,
at a fine level of detail, many of the optimization decisions made by R-Stream, a polyhedral
based source-to-source compiler.* The main contribution of PUMA-V, compared to previous
work on polyhedral visualizations, is its tight integration with a fully-automatic compiler via
linking to the compiler’s library, calling functions such as scheduling, dependence analysis, etc.
The automatic compiler uses linear programming to produce a program schedule, optimizing a
cost function that favors locality, parallelism, and other factors. PUMA-V empowers the user,
possibly after an automatic optimization, to improve the schedule further. The views of PUMA-
V are augmented with static and runtime performance analyses to help guide the user in making
manual transformation decisions to the most problematic parts instead of just applying boiler-
plate transformations. A simple drag-and-drop interface makes it easy and intuitive to use.

User studies we conducted show that the semi-automatic approach available through this tool
enables better performance as well as a greatly improved understanding of the transformations
made by the compiler. Although we apply this tool to a compiler based on the polyhedral model,
many of the visualizations and interactions we use can be applied to compiler optimizations in
general. With the widespread adoption of polyhedral techniques into popular compilers like
GCC and LLVM, our tool will become even more useful in the future.

| THE POLYHEDRAL MODEL

Much work has been done on the polyhedral model for loop parallelization.! These techniques
involve representing a loop nest as a system of linear constraints. This is an abstraction where
the lower and upper bounds of a simple for loop become linear constraints that define the bound-
ary of a polyhedron, or iteration domain for a statement. In programs with nested loops, each
loop represents an axis in the multi-dimensional iteration domain. Each point in the iteration
domain represents an instance where the statement will be executed and is assigned a logical
execution date based on the surrounding loop iterators. Changing the shape of this polyhedron
translates to a transformation of the code because it changes the execution dates of the statement
instances. New execution dates can be computed for statement instances via a scheduling rela-
tion. This is a multi-dimensional vector that can represent a number of common program trans-
formations (e.g. loop interchange, fusion / fission, skewing, etc.).

Along with the iteration domain, dependences between statement instances are computed. A
dependence occurs when two statement instances access the same memory location and at least
one of these accesses is a write. Dependences help define the semantics of the program (i.e.,
preserving dependences will preserve program semantics). The iteration domain and dependenc-
es together form a linear programming problem; where the objective is to minimize the runtime
by transforming the iteration domain in a way that exposes parallel loops. C code is then gener-
ated from this abstraction and compiled by a low level compiler (e.g. GCC). Algorithms that
perform code transformation in this way are called polyhedral scheduling algorithms. Modern
polyhedral compilers expose loop parallelism in a way that also allows the loops to be tiled (i.e.
an important optimization for cache locality).

Polyhedral compilers expose loop-level parallelism, optimize for cache locality, expose SIMD
parallelism, etc. In practice they make reasonably good optimization decisions that result in bet-
ter performance. Because the polyhedral model is based on heuristics and cost models, some
optimization decisions are sub-optimal. Hence, while performance improvement is generally
obtained, there is no guarantee on the optimality of the performance of the optimized programs.

I THE PUMA-V INTERFACE

The interface we present here builds on our previous system published in ?° (see sidebar for a
description). The main view (Figure 1), chord view (Figure 7), and global view (Figure 9(b))
together give a detailed account of the optimizations made by R-Stream and various performance
characteristics of the transformed code. These views are all linked and transformations made in
one view will trigger an update in the others to show the state of the transformed code. Current
tools allow users to make polyhedral transformations; but do not incorporate automatic polyhe-

B --/TURE ARTICLE

Runtime Eval (2) CPO+O—O—H—O—O
a 5y @ & ~ > X

-9@ & o g" § & 3 ril? i'?.

&] & 3 & 5 & 5 P

deall (1 = 0; 1 <= 511; i++) {
doall (j = 0; J <= 511; j++) {
matmult_2 (>aCl[i,]j]) ;
(h) (C) reduction_for (k = 0; k <= 511; k++) {
matmult_7(<>aC[i,j],<aa(i, k], <aB[k,3]) ;
}
}
deall (3 = 0; j <= 511; j++) {
matmult_3 (»aD[i,31) ;
» reduction for (k = 0; k <= 511; k++) {
matmult_11(<>aD[i,j],<ac[i,k],<aElk,3]) ;
}
}

] {7} 11}

Figure 1 The PUMA-V tool showing the state of the code — a consecutive matrix multiplication
task — after the “affine scheduling” (as) optimization (or tactic) has been applied. (a) The tactic
view is a subway visualization, where each tactic is represented by a station, applied sequentially
left to right. (b) The dependence graph view shows a node-link diagram where nodes represent
statements and edges represent dependences. (c) The code view lists the nested-loop program
code that is being optimized. (d) The beta tree view shows the lexicographic ordering of loops
and statements. Each branch is a nested loop where the numbers refer to the numbers
appended to the code statements in the code view.

dral scheduling techniques. To the best of our knowledge, PUMA-V is the first tool that visual-
izes exposes the internal mechanics of an advanced polyhedral based compiler.

Tactic View

The R-Stream compiler applies a sequence of polyhedral and classical optimizations called tactics. By de-
fault, it only applies a small subset of tactics designed to give good performance in the general case. R-
Stream has a large repository of tactics (close to 100). Some of the more popular ones are dep() which per-
forms dependence analyses, morph() which builds cost functions based on the processor’s characteristics
(cache size, number of cores, etc.) and as() which performs affine scheduling. Others are typically not used
by the average user such as alternative polyhedral scheduling algorithms, different tiling tactics, stencil
specific optimizations, etc.?* Many of these tactics outperform the default set of tactics for certain programs;
and so we strived for a visual interface that can provide users with an easier way of experimenting with dif-
ferent transformations.

Tactics are applied in a sequential manner. A familiar paradigm to visualize sequential processes
is the subway visualization.® Figure 1(a) shows the tactic view using our subway visualization
view, where each tactic is represented by a station. Tactics are applied from left to right. Each
station takes the state of the code given to it from its left neighbor and applies a new tactic. A
user can visit a station by clicking on the node. This will update the other views to reflect the
state of the code after the clicked tactic is applied. In Figure 2, the larger yellow station signifies
that the user has clicked on the “affine scheduling” (as) node.

The code view in Figure 1(c) is updated to reflect the state of the code after the current tactic is
applied. This view contains a pseudo-code representation of the transformed code. The suffix of
a nested loop body statement displays its unique identifier. For example, the “7” in “matmult 7”
indicates that this is statement 7. This view also distinguishes between a read and write to arrays
within a statement. The “>” sign indicates a write while a “<” indicates a read. For example,
statement 7 in Figure 1(c) reads and writes to a C[i,j] and only reads from a A[i,k] and a B[Kkj].

I COVMPUTER GRAPHICS AND APPLICATIONS

doall (i = 0; 1 <= 7999; i++) {
reduction _for (j = 0; j <= 79%9; j++) {
gemver2 2 (<=A[j,1].<v2[i].<v1[i).=u2[j],=<ull]]
gemver2 5 (<=x[i].<y [i].<A[3.1]) ;
i
gemver2_7 (<z[i].<>x[1]]) ;
}

deall (i = 0; i <= T7999; i++) |
raduction for (i = 0; 4 == 7983; j++) |
gemver2_10{<>w([i] ,=x[1].<ali, 3]} :

1 2 {5} {10}

Figure 3: Result of clicking on the node labeled (2,5,7). The corresponding text in the
code view is highlighted. The code here is from the Polybench benchmark suite 2

Changes from the previous tactic are highlighted in green. The doall and reduction loops high-
lighted in Figure 1(c) indicate that the application of the “affine scheduling” (as) tactic has re-
sulted in parallel loops. This indicates that the “as” tactic was responsible for exposing
parallelism. This feature increases the transparency of the optimizations. Instead of just viewing
the transformed code, the user can see exactly how each tactic changes the code.

The user can also add new tactics at any station in the view. By right clicking a station and se-
lecting “Add Tactic”, a popup will show the list of available tactics. Adding a new tactic causes
the visualization to branch off a new subway line. This line is assigned an unused color and rep-
resents an alternative sequence of optimizations (see Figure 2). Different subway lines share the
sequence of tactics up to the point where they diverge. In Figure 2, both the orange and light blue
lines apply the ”morph” and ”dep” tactics before diverging into separate optimization sequences.
Adding a tactic at the end of a subway line extends the line. There is no limit to the number of
tactics that can be assigned to a subway line. This allows the user to experiment with different
optimizations while keeping older sequences in a color coded format.

Beta Tree View

The beta tree view of Figure 1(d) shows the lexicographic ordering of loops and statements. It is
a visualization of the B component of the scheduling relation of Figure 1(c). Since R-Stream
stores this loop position information in a tree data structure, using a tree visualization was a natu-
ral choice. Inner nodes correspond to loops and leaf nodes correspond to statements. Each node
is labeled by the IDs of the statements that it contains. The node labeled {2,7}, for example, con-
tains nested loop body statement 2 and statement 7 (matmult_2 and matmult_7, see previous
section).. Except for the root, each level in the tree corresponds to a loop level. Level 0 of the
tree corresponds to the outer most loops. Level 1 corresponds to the next outer most loops, etc.
Nodes below level 0 of the tree correspond to nested loops. The tree visualization also conveys a
concise overview of the structure of the code. By looking at Figure 3, for example, we can see
that statement 10 is nested under two loops and that statement 2, 5, and 7 share an outer loop.
Additionally, clicking on a node in the beta tree highlights the related section of code in the code

QCOCCO—
& & T 0@
28 g
§ &\ ¢ & & £
O—0 O
C.,r\;“w
o O
& F

Figure 2: The subway visualization used in the tactic view. Different colored lines represent
different optimization paths that can be taken by the compiler. The orange and light blue
lines diverge from the dark blue line after the “dep” station.

B --/TURE ARTICLE

(b)

@ il ok 5 oy (@ s {10}

Figure 4: Loop interchange can be performed directly through the beta tree.
Hovering over the node in (a) highlights permutable loops. A drag and drop action
interchanges the loops (b)-(c).

view. This includes any nested loops and statements; as seen in Figure 3.

The two most important performance metrics in parallel computing are parallelism and locality
which often present tradeoffs. In order to communicate both of these metrics to the user simulta-
neously we split the inner nodes (which represent loops) into two halves and colored each half
with respect to one of the two metrics. The leaf nodes on the other hand are colored blue to indi-
cate that they represent statements. The left half of an inner node is colored based on parallelism,
while the right half is colored based on the array access stride of the loop. For parallelism, green
corresponds to doall loops. Yellow represents reduction loops and red represents a sequential
loop. Doall loops contain the maximum amount of parallelism. Loops that have doall parallelism
carry no dependences; and so each iteration of the loop can be executed simultaneously. Loops
that are marked as reduction carry a dependence that results from an operation that is associative
(e.g. addition, subtraction, etc.) and can be executed via a parallel reduction. Loops marked se-
quential have no parallelism and become simple for loops in the transformed code.

The right half of the nodes are colored from red to yellow to green based on a linear scaling
of the stride. Red indicates a large array access stride, while green represents a low stride.
The stride of a loop has important implications for locality. A low stride loop at the inner-
most position indicates good spatial or temporal locality (i.e. data is likely to be in cache
when it is needed). An optimal ordering for loops with respect to stride is to have the red
nodes at the top of the tree, yellow nodes in the center, and green nodes at the bottom. An
example of this split color can be seen in node {2,5} of Figure 3. This node is colored yel-
low and red to indicate it represents a reduction loop with a high memory access stride.
Although node colors are split based on parallelism and locality by default, radio buttons at
the bottom of the tree allow the user to toggle between showing parallelism only or stride
only views.

We also wanted to define a set of visual interactions by which users could perform code
transformations directly in the beta tree. When the mouse hovers over a node in the beta
tree, nodes that it can be interchanged with are highlighted (see Figure 4). By dragging the
node and dropping it to a new position, the user can perform a transformation called loop
interchange (i.e. permuting the order of loops in the loop nest). Loop interchange can be
used to change the execution order of the loop nest to improve locality of reference. Entire
loop nests can also be moved by dragging a node horizontally. This can improve data reuse
by bringing statements that share data closer together. Figure 5(a-c) shows an example of
moving the loop nests.

Users can also perform loop fusion or loop fission through the beta tree (see Figure 5(d-f)). Right
clicking on a node gives the option to perform fusion or fission. Selecting fusion will highlight
the nodes that are legal for loop fusion. Fusing statements that share data increases the likelihood
that data is already in cache when it is needed. Fusing some loops, however, can lower the
amount of parallelism, turning a doall loop into a reduction or sequential loop. Fission is the
opposite of fusion and will split a single loop nest into multiple loop nests. In our tool, fission is

I COVMPUTER GRAPHICS AND APPLICATIONS

{7} {11} n {1}) {11}

Fuse Loop

Fission Loop

4]

v~y

)) wh @ 5 0w @) 10}
(d) (e) (f)

Figure 5: Some beta-tree operations. Reordering loop nests directly through the beta tree.
Hovering over the node in (a) highlights swappable loop nests. A drag and drop action
changes the loop nests (b)-(c). Right clicking on node 7 brings the option to perform fusion or
fission (d). Selecting “Fuse Loop” highlights only loops where fusion is legal (e). Clicking node
10 causes the loops to fuse (f). Note that we lose the parallelism of the doall loop on 7.

only allowed on loop nests that contain multiple statements and will cause each statement to
separate into an isolated loop nest.

The transformations available through the beta tree view are especially useful when used in con-
junction with the dependence graph (Figure 1(b)); which uses heuristics to visualize whether a
statement has good cache locality. The dependence graph highlights likely performance bottle-
necks; and the user can perform a simple transformation through the beta tree to remove it.

Dependence Graph View

The R-Stream compiler performs a dependence analysis to identify the legal transformations and
the amount of parallelism available in the program. A part of this process is the construction of a
dependence graph. In this graph, nodes represent statements, and edges represent dependences.
The polyhedral scheduling algorithm used by R-Stream adds additional information to this graph
to indicate the desirability of certain transformations. This effectively turns the dependence
graph into R-Stream’s cost model. A cost model is constructed for each loop level of the pro-
gram based on heuristics and on the dependence representation. Transformations are determined
on a level by level basis. Optimization decisions are made for the outer most loop level first; then
the next loop level, etc. Figure 1(b) shows the cost model as a dependence graph visualization
for the outer most loop level (i.e. level 0). In general, the dependence graph view shows the cost
model for a particular loop level and allows the user to navigate to other loop levels via black
triangles on either side of the view.

The dependence graph view is implemented as a polymetric visualization.® This view contains
visual clues conveying a variety of performance heuristics relating to cache locality. Figure 1(b-
¢) show sample code and its dependence graph. The color of the node indicates the amount of
spatial or temporal locality available within a single statement. Good locality is achieved by
minimizing the number of cache misses. Red indicates that the statement has poor spatial locali-

B --/TURE ARTICLE

(b)

(d) 4] 11}

Figure 6: Performing transformations in the beta view causes the dependence graph
view to update. Statements 7 and 11 in (a) exhibit poor locality. By performing loop
interchange on statement 7 (b)-(d) the locality is improved (c).

ty; meaning the requested data is likely to be off cache. This is commonly caused by a high ac-
cess stride of the innermost loop. Green indicates the statement has good spatial locality.

Edges between nodes indicate a dependence. This represents a producer / consumer relationship
between the two statements in dependence. In Figure 1(b), the arrow points from node 7 to node
2; indicating that statement 2 writes to a memory location that statement 7 accesses (i.e. state-
ment 7 depends on statement 2). The length of the edge is determined by the dependence dis-
tance (i.e. the number of loop iterations between the source and destination of the dependence).
The width of the edge indicates the volume of data that is communicated between the two state-
ments. Optimizations can be selected to change the length of the edge. Shortening an edge
through fusion, for example, reduces the amount of time between the execution of two dependent
statements; thus, improving the likelihood that data is in cache. Edge width, however, cannot be
affected. Visualizing this metric can help users identify statements that communicate a lot of data
and pick transformations that shorten the edge in the dependence graph view.

Dependences can also occur within a statement. This arises when a statement writes to a memory
location at one loop iteration; and then reads from the same memory location at a later loop itera-
tion. The size of the nodes in the dependence graph view indicates the intra-statement depend-
ence distance. Larger nodes indicate a greater number of iterations between consecutive
accesses; suggesting that the data communicated has likely been evicted from the cache. An
example of this can be seen with statement 7 in Figure 1. We chose to use node size to represent
intra-statement dependences because the view became cluttered and difficult to read when visu-
alizing large self-loops.

We visualize performance heuristics relating to locality because memory bandwidth can often be
a major performance bottleneck. It is also relatively easy to compute simple, effective heuristics
to show the likelihood of a cache miss. Additionally, we already visualize the amount of parallel-
ism through the beta tree view. Another performance heuristic we considered is the likelihood
that a loop will be vectorized by a low level compiler (e.g. GCC). This, however, may not be as
effective; since auto-vectorization greatly depends on the algorithms used by the low level com-
piler.

Size and color of the nodes as well as the length of the edges can all be affected by optimizations
that change how data is accessed. In addition to the tactic view and the beta tree view, optimiza-

I COVMPUTER GRAPHICS AND APPLICATIONS

(b)

roor® roor®
s n®° 10 ®° s @ w®°
s @° w®° s ®° w®°
a® @ @ Do W@ @ @ Do
a® 5@ o w@®° n® @ o w®
@ P w®e 0@ 5Or e
@ (9 {10} @) 19 {10}
D@ [E3] BLE]
™1 ™

Figure 7: The chord view shows poor locality along accesses to the A array (a) and how permuting the inner loops of
statement 2 leads to a better access pattern (b). The colored arcs show the elements accessed at timestep 1 while
the gray, shadow arcs show the accesses of the previous timestep. Note that the leaf node labeled f2g and the node
directly above it in the beta tree are opaque to indicate that the current timestep refers to the first iteration of the
innermost loop of statement 2.

tion decisions can also be affected by changing the dependence graph view. Values associated
with the edges and nodes govern the desirability of certain transformations. A fusion score is
associated with the dependence edges. This indicates the desirability of fusion among loop nests
that contain the statements in dependence. Setting a high fusion score on an edge will increase
the likelihood that the statements will be fused; thus, shortening the edge. Conversely, setting a
high negative fusion score will encourage fission between the two statements; causing the edge
to lengthen. Similarly, the nodes contain a value for the execution cost and SIMD weight. The
execution cost represents the amount of computation associated with the statement. A high exe-
cution cost will cause R-Stream to view parallelizing the loops surrounding the statement as a
high priority. This can improve parallelism at the cost of locality. A high SIMD weight encour-
ages optimizations that allow the low level compiler (e.g. GCC) to vectorize the code. This is a
type of inner loop parallelism that R-Stream enables through the use of pragma directives.
PUMA-V exposes the fusion score, execution cost, and SIMD weight to the user for
modification.

The dependence graph view acts as a proxy for good performance. The user’s goal is to find
transformations that make the nodes small and green and the fat edges as short as possible.
Changing the transformations can be done by selecting different R-Stream tactics in the tactic
view, modifying the fusion or execution costs associated with the dependence graph, or by ex-
plicitly modifying the loop ordering in the beta tree view. Changes made in any of these views
will cause the dependence graph to update to reflect the performance characteristics of the trans-
formed code. Figure 6 shows an example of how the dependence graph view highlights perfor-
mance bottlenecks that can be fixed via the beta tree view.

Chord View

The chord view is a new type of visualization which shows the access pattern of the program via
a chord diagram. A chord diagram is a visualization used to show relationships between entities.
Arcs are drawn between nodes arranged on a circle to show that the nodes have something in
common. For our purposes, the nodes represent array elements and the arcs represent memory
accesses. The goal of this view is to help non-expert users better understand concepts like spatial
and temporal locality and their impact on performance.

B --/TURE ARTICLE

This view maps arrays to a circle as seen is Figure 7. The nodes are colored based on the array in
which it belongs. Arcs are colored based on the array being read from at the current timestep.
The node highlighted in yellow represents the array element that is written to in the current
timestep (i.e. the write element). For each timestep, arcs are drawn from the write element to the
array elements that are read. This shows, in a single view, the memory footprint of a single itera-
tion of one statement.

A slider at the bottom allows the user to select the timestep shown in the chord diagram. Shadow
arcs are drawn for the previous timesteps to help clarify the access pattern. Large gaps between
the color and shadow arcs indicate poor locality of reference. In Figure 7(a), for example, the
program suffers from a bad access pattern as seen by the large gap between the color and shadow
arcs along array A. Regions of the slider bar are colored from green (i.e. good locality) to red (i.e.
bad locality) based the access pattern of the timesteps they represent. Specifically, the color is
selected from a linear scale based on the stride of the innermost loop. This helps users quickly
identify the regions that need inspection.

The beta tree view is replicated and shown next to the chord view. In addition to allowing the
user to perform transformations like fusion / fission and interchange, this beta tree is augmented
to provide additional context to the chord view. Nodes that do not relate to the current timestep
are made transparent while opaque nodes indicate which iteration of a statement is being execut-
ed at the current timestep. The integer to the right of the inner nodes of the beta tree show the
current iteration of the loop it represents. Together, this implies a mapping from timestep to
statement and loop iteration.

Because loops can be parametric, we cannot perform this type of static analysis for each itera-
tion. Even for loops with a constant trip count, displaying a chord diagram for each iteration is
impractical, since there may be thousands of iterations. The size of arrays can also be too large to
display each element as a node in the chord diagram. To address this scalability issue, chord
diagrams are only produced for the first four iterations of each loop. The idea is that only a few
iterations of each loop is needed to give the user a good idea of the access pattern. This limits the
number of timesteps for which we need to produce visualizations. Similarly, only the first four
elements of each dimension are displayed for each array. This is followed by a special ellipsis
array element to account for accesses that do not fall within the first four elements of a dimen-
sion. The ellipsis element acts as a representative for the rest of the array and accesses not within
the first four elements have arcs drawn to this node.

Although locality of reference is represented elsewhere in PUMA-V, the chord view displays a
finer level of detail than the other views can provide. Whereas the beta tree and dependence
graph can highlight which statements have bad locality, the chord view shows which array ac-
cesses specifically are the problem. The benefits of fusion are also more clearly shown in this
view, as users can see exactly which array elements are shared between statements. Conversely,
it is also obvious when R-Stream fuses two statements that should not be fused. This is observed
as a type of ping-ponging effect where different arrays are accessed at each timestep. With the
chord view a user can rapidly identify a bad access pattern at a range of timesteps, determine
which statement the timesteps refer to, and perform a transformation in the beta tree to achieve
better locality.

Tile Size View

Tiling is an important transformation that groups iterations of statements together so that they
can benefit from data reuse. The goal is to maximize the likelihood that the data has already been
read into cache when it is needed again. This is especially useful for statements that have an
undesirable access pattern that cannot be addressed through loop interchange. Tiling is a combi-
nation of a strip-mine and an interchange. A loop is first strip-mined by a number of iterations
(i.e. the tile size), and then the strip-mined loop is sunk to the innermost position.

The tile sizes determine how many iterations are grouped together and have important impacts
on performance. If the tiles are too large then performance will suffer from cache capacity miss-
es. If the tiles are too small, then the cache may not be fully utilized. Tiling is performed by a
tiling tactic in R-Stream where the tile sizes are selected based on a heuristic. In PUMA-V, tile

I COVMPUTER GRAPHICS AND APPLICATIONS

{2} {5} {10}

Figure 8: The tile beta tree view shows which loops will be tiled. The concentric arcs
show the saturation of the three levels of cache based on the current tile size. The
green, orange, and blue arcs refer to the L1, L2, and L3 caches respectively. The node
outlined in yellow indicates that changes to the tile slider will affect the degree to which
the corresponding loop will be strip-mined.

size selection is exposed to the user through a simple slider interface with a novel tree-based
visualization to help guide him.

Figure 8 shows the tile size visualization. It is built from the beta tree prior to tiling. The large
nodes represent loops that will be tiled. Clicking on any of these nodes switches the focus to the
clicked node. A slider can then be used to set the tile size of the highlighted node. The nodes
corresponding to tiled loops contain a visualization using three concentric arcs. These represent
the saturation of the three levels of cache. The inner green arc represents L1 cache. The orange
arc represents L2 cache and the outer blue arc represents L3 cache. Moving the slider changes
each of the arcs. The appropriate level of cache is fully saturated when the arc completes to form
a circle. This allows the user to make informed decisions about the size and shape of a tile.

The arc sizes within a node are computed based on the data footprint of the arrays accessed by
the statements nested within the loop it represents. Specifically, for each statement, we take the
image of the iteration domain under the access function of each array. Parametric upper bounds
are add